
AVACS – Automatic Verification and Analysis of Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Small witnesses, accepting lassos and winning strategies in
ω-automata and games

by
Rüdiger Ehlers

AVACS Technical Report No. 80
October 2011

ISSN: 1860-9821

1

Publisher: Sonderforschungsbereich/Transregio 14 AVACS (Automatic Verification and Analysis of Complex Systems)
Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle, Ernst-Rüdiger Olderog, Andreas Podelski
ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© October 2011 by the author(s)
Author(s) contact: Rüdiger Ehlers (ehlers@react.cs.uni-saarland.de).

Small witnesses, accepting lassos and
winning strategies in ω-automata and games

Rüdiger Ehlers

October 14, 2011
Reactive Systems Group, Department of Computer Science, Saarland University

66123 Saarbrücken, Germany

Obtaining accepting lassos, witnesses and winning strategies in ω-automata and games
with ω-regular winning conditions is an integral part of many formal methods commonly
found in practice today. Despite the fact that in most applications, the lassos, witnesses
and strategies found should be as small as possible, little is known about the hardness of
obtaining small such certificates. In this paper, we survey the known hardness results and
complete the complexity landscape for the cases not considered in the literature so far.
We pay particular attention to the approximation hardness of the problems as approximate
small solutions usually suffice in practice.

1 Introduction

Automata and games with ω-regular acceptance or winning conditions have been proven to be valuable
tools for the construction and analysis of complex systems and are suitable computation models for
logics such as the monadic second-order logic of one or two successors [11, 23, 1, 24]. By reducing a
decision problem to determining the winning player in a game or checking emptiness of an automaton,
the algorithmic aspect of solving the problem can easily be separated from the details of the application
under concern. Winning strategies for one of the players in a game or accepting runs in an automaton
in turn can be used as certificates for the answer to the original problem.

In many applications, the actual content of such a certificate is also of interest. In the game con-
text, for example, when synthesizing finite state systems [25, 18] from temporal logic specifications,
the certificate for the system player in the corresponding game represents a system that satisfies the
specification. In alternating time logic (ATL) [1], the question is imposed whether agents in a certain
setting can ensure certain global properties of a system. A certificate for the corresponding model
checking game represents either a set of strategies for the agents to achieve their goal or a counter-
strategy for the remaining agents to prevent this. In the automaton context, on the other hand, when
model checking a finite-state system against some linear-time specification, the question whether there
exists an erroneous computation of the system is typically reduced to the emptiness problem of some
automaton and an accepting run of the automaton then is a finite representation of such a computation
and a proof that it violates the specification at the same time.

In all these cases, certificates (the winning strategies in the game or the accepting runs of the
automaton) that have a smaller representation are normally preferred. Such solutions are easier to

1

1 Introduction

comprehend and have (computational) advantages if used in successive steps (like building circuits
from strategies in a synthesis game) or for analysing why a certain property holds or not. While in the
automaton context, there exist some results for Büchi and generalised Büchi acceptance conditions,
little research has been performed on obtaining small strategies in games, even though it has been
observed that needlessly large strategies are often problematic [17, 2].

From a technical point of view, two types of game strategies have to be considered: arena-based and
stand-alone ones. In the former case, the behaviour of a player at any point in time is dependent on the
game position she is in at that point. A typical representative of this class are the positional strategies,
which only depend on the game position. These for example give insight on why a modal µ-calculus
formula is valid in some model or provide information about why a specification is unrealisable in
synthesis, as the obligations are encoded into the game graph and are thus easily interpretable. In
case of the more complex generalised Büchi, Streett and Muller winning condition types, in which
memoryless determinancy (which guarantees that whenever some player has a winning strategy, she
also has a positional strategy) does not hold, so-called finite memory strategies are considered instead,
in which the player always decides the next memory content and the next move depending on the
current memory content and the current position in the game. Here, again, the current position in the
game arena is taken into account for a move.

On the other hand, stand-alone strategies do not use the current position in the game as an ex-
ternal input, and must use their memory to keep track of information about the history of the play,
if needed. They are typically represented as Mealy or Moore automata that read the actions of one
player and output the actions of the other player such that the other player wins the game when sim-
ulating the behaviour of the automaton. These are, for example, a suitable model for synthesis using
realisable specifications as such strategies are typically smaller than positional ones but sufficient for
transforming the strategy into a circuit that satisfies the specification. While they are equi-expressive
as finite-memory strategies, they give rise to a different definition of strategy size, which motivates
their consideration here.

As automata can be seen as games with only one player, the definition of these strategy types
directly carries over to the automaton case. Here, however, arena-based strategies are typically called
accepting lassos in the literature. Likewise, winning stand-alone strategies for one-player games
have been introduced under the name witnesses [17], which are accepted words of the form uvω for
some finite words u and v. In the model checking context, an accepting lasso typically represents
an erroneous computation of a system and a proof for the violation of the property at the same time.
Witnesses are used to represent only the computation in a concise way, which is often more useful as
the accepting lassos incorporate information about the specification automaton cycle corresponding
to the violation, which the user of a model checking system typically does not care about.

For a positional strategy, we denote by its size the number of positions in the game that can be
reached on some path when the corresponding player follows the strategy from the initial position.
For a lasso, its size is defined as the length of its cycle plus the length of the path to the cycle. For
finite memory strategies, their size is defined to be the number of combinations of memory content
and game positions that can occur along some path when following the strategy from the initial game
position (and the initial memory content). For stand-alone strategies in two-player games, the number
of states of the corresponding Moore automaton is taken as the size measure. The size of a witness
uvω is defined to be |u|+ |v|.

Using these definitions, the sizes of the smallest finite-memory strategy and the smallest positional
strategy coincide in game types that are memoryless determined (which is proven later in Theorem

2

1 Introduction

1).1 Thus, we henceforth simplify our presentation by using the term arena-based strategy for both
positional and finite-memory strategies as no cases remain that could cause ambiguity. The definitions
above make sure that the size measures for lassos and witnesses are special cases of the size measures
for arena-based and stand-alone strategies, respectively, which stresses the conceptual similarities of
the one- and two-player cases.

For automata, the problem of finding small non-emptiness certificates has been tackled by a couple
of researchers in the context of model checking. In case of the Büchi acceptance condition, it is well-
known that shortest accepting lassos can be computed in polynomial time (see, e.g., [10, 22]). On the
other hand, for automata with the generalised Büchi acceptance condition, the problem is known to
be NP-complete [5]. For finding shortest witnesses, the problem is known to be NP-complete even for
the Büchi acceptance condition [17].

Despite these results, the complexity landscape for the problems of finding shortest lassos and
witnesses in ω-automata for the various acceptance condition types is not completely known yet. In
the case of two-player games, the situation is a little bit better: here it is known that finding a minimal
positional strategy in a safety game is an NP-complete problem and there also exists no polynomial-
time approximation scheme (PTAS) [4]. As safety games are a special case of parity, Büchi, co-Büchi,
generalised Büchi, Rabin and Streett games, the NP-hardness result also applies to these cases.

As for practical applications, it normally suffices to give small but not necessarily minimal winning
strategies (such as, e.g., strategies of size not more than two times the size of the smallest strategy),
accepting lassos or witnesses, such approximation hardness results are as important as solutions to
the exact hardness problems. Nevertheless, again, such questions have only been answered for some
special cases so far.

1.1 Scope of this paper

In this paper, we perform a rigorous study of the problems of finding small accepting lassos, witnesses
and winning strategies in ω-automata and games for all commonly used acceptance/winning condition
types. For all of these cases, we review the known complexity results for the exact minimization of
the size of accepting lassos, witnesses or winning strategies and complete the complexity landscape
for the cases not considered in the literature so far. This results in the first complete exposition of the
borderline between the hard and simple problems in this context. Directly connected with this survey
is the question how well the size of the minimal winning strategies, witnesses and accepting lassos
can be approximated in polynomial time (provided that P 6=NP), as only then, the problem becomes
hard for practice as well. The results we obtain in this paper for the approximability of the problems
considered are mostly negative: for example, we show that approximating the minimal witness size
within any polynomial is NP-complete even for an automaton having the simple safety acceptance
condition. On the positive side, we also provide a general exponential-quality approximation scheme
that is applicable to many of the problem settings discussed in this paper.

Table 1 on page 10 contains a summary of the results. This technical report complements an earlier
paper by its author [9] that only considered the one-player case and appeared at the 4th International
Conference on Language and Automata Theory and Applications (LATA), 2010. In this technical
report, we complete the picture for the two-player case and reuse hardness results from [9] in those
sub-cases in which they are applicable.

1As it is questionable to examine the problem of determining the size of the smallest positional strategy for games with
winning condition types that do not induce memoryless determinancy, we may restrict our attention to finite-memory
and stand-alone strategies for these.

3

2 Preliminaries

This paper is structured as follows: In the next section, we define game arenas, acceptance and win-
ning conditions and the two notions of strategies used in this work. A discussion of the corresponding
definitions for the one-player case and a summary of the terminology for approximation algorithms
closes the preliminaries section. Then, we give an overview of the results. We proceed by showing
that all problems discussed in this paper are contained in the complexity class NP, followed by a novel
approximation hardness result for obtaining small arena-based strategies. A conclusion sums up the
results of this paper and provides an outlook.

1.2 Related work

To the best of our knowledge, the amount of related work for finding small winning strategies, wit-
nesses and accepting lassos in one- and two-player games in addition to the works aforementioned is
very limited. Holtmann and Löding [13] describe a scheme that typically allows for finding smaller
strategies in a weak Muller game by converting the game to a weak parity game and using an au-
tomaton minimisation technique such that winning strategies in this setting are usually smaller. Fur-
thermore, Bloem at al. [2] describe a symbolic strategy selection heuristic in a game that has already
been pruned from all positions that are losing for the first player. The heuristic is applied to synthe-
sizing circuits from a synthesis game. They report that the sizes of the synthesized circuits are usually
huge compared to hand-made implementation satisfying the same specifications. In [16], Kupferman
et at al. show that checking if there exists a stand-alone strategy of a given size in a Büchi game is
NP-complete.

2 Preliminaries

We start by recalling the basic definitions used for two-player games and point out the differences to
one-player games (automata). Then, we formally define the strategy size concepts and recall the basic
terminology for approximation algorithms.

2.1 Games

A game arena G = (V0, V1, A0, A1, E0, E1, v0) is defined with two finite sets of vertices (also called
positions) V0 and V1 for the two players 0 and 1 of the game, the finite sets of actions they can choose
from (A0, A1), their possible moves (E0 : V0 × A0 ⇀ V1, E1 : V1 × A1 ⇀ V0) and the initial
position v0 ∈ V0. For all p ∈ {0, 1}, we say that some action a ∈ Ap is available to player p at a
position v ∈ Vp if Ep(v, a) is defined. We assume that all of these sets are finite. A game position
v ∈ Vp for some p ∈ {0, 1} is called a successor position of some position v′ ∈ V1−p if there exists
some action a ∈ A1−p such that E1−p(v

′, a) = v. A game is also called a one-player game for some
player p ∈ {0, 1} if we have |A1−p| = 1 and E1−p is a total function. One-player games for player
0 are also called ω-word automata or simply ω-automata if for all v ∈ V1, E1(v1, a) is defined for
a ∈ A1. In this case, the identifiers V1, A1 and E1 are typically omitted from the game definition and
for all a ∈ A0 and v ∈ V0, we take E′0(v, a) = E1(E0(v, a), a′) for the only element in a′ ∈ A1 as
the modified edge function for player 0 (which circumvents visiting vertices in V1 altogether). Here,
the vertices are also called states, the action set is called the alphabet and E0 is called the transition
relation. The state set in this case is typically referenced to by the letter Q whereas Σ, δ and q0
represent the alphabet, the transition relation and the initial state, respectively.

We say that there exists some path from some vertex v ∈ V0 to some vertex v′ ∈ V0 if for
some a01, . . . , a

0
n ∈ A0 and a11, . . . , a

1
n ∈ A1, we have E1(E0(. . . E1(E0(v, a

0
1), a

1
1), . . .), a

1
n) = v′.

4

2 Preliminaries

We define the size of a game arena as |G| = |V0| + |V1| + |A0| + |A1| + |{(v, a) ∈ V0 × A0 |
E0(v, a) is defined}|+ |{(v, a) ∈ V1 ×A1 | E1(v, a) is defined}|.

A decision sequence in G is a sequence ρ = ρ00ρ
1
0ρ

0
1ρ

1
1 . . . such that for all i ∈ N0, ρ0i ∈ A0 and

ρ1i ∈ A1. A decision sequence ρ induces an infinite play π = π00π
1
0π

0
1π

1
1 . . . with π00 = v0 and for all

i ∈ N0 and p ∈ {0, 1}, we have Ep(π
p
i , ρ

p
i) = π1−pi+p . Likewise, a finite play π = π00π

1
0π

0
1π

1
1 . . . π

p
n is

induced for some p ∈ {0, 1} if π00 = v0, for all i ∈ N0 and p′ ∈ {0, 1}, i < n + p · (1 − p′) implies
Ep′(π

p′

i , ρ
p′

i) = π1−p
′

i+p′ , and Ep(π
p
n, ρ

p
n) is undefined. For such a play, we say that π ends in πpn.

In a game, the players involved try to win the game according to the winning condition imposed. A
play ending in a vertex in V0/V1 is winning for player 1/0, respectively. Within the scope of this paper,
we always view the game from player 0’s view, so we simply call a play winning or accepting if it is
winning for player 0. For an infinite play π, whether π is winning is defined over the vertices of V0
occurring infinitely often along the play (denoted by infV0(π)):

• For a safety winning condition, player 0 wins on every infinite play.

• For a Büchi winning condition F ⊆ V0, π is accepting if infV0(π) ∩ F 6= ∅.

• For a co-Büchi winning condition F ⊆ V0, π is winning if infV0(π) ∩ F = ∅.

• For a generalised Büchi winning condition F ⊆ 2V0 , π is accepting if for all F ∈ F , infV0(π)∩
F 6= ∅.

• For a parity winning condition, F : V0 → N and π is accepting if max{c(v) | v ∈ infV0(π)} is
even.

• For a Rabin winning condition F ⊆ 2V0 × 2V0 , π is accepting if for F = {(F1, G1), . . . ,
(Fn, Gn)}, there exists some 1 ≤ i ≤ n such that infV0(π) ⊆ Fi and infV0(π) ∩Gi 6= ∅.

• For a Streett winning condition F ⊆ 2V0 × 2V0 , π is accepting if for F = {(F1, G1), . . . ,
(Fn, Gn)} and for all 1 ≤ i ≤ n, we have infV0(π) * Fi or infV0(π) ∩Gi = ∅.

• For a Muller winning condition F ⊆ 2V0 , π is accepting if inf(π) ∈ F .

We define that player 1 wins all infinite plays that are not winning for player 0. Given some game arena
G and some acceptance component F of type t ∈ {Safety,Büchi, co-Büchi, generalised Büchi, parity,
Rabin,Streett,Muller}, we say that 〈G,F〉 is a game of type t (for safety games, the F symbol is
usually omitted). We say that a play is winning in 〈G,F〉 if and only if it is winning for F using the
definition of t-type acceptance given above. By abuse of notation, we henceforth add the acceptance
component to the game arena tupel. We define the size of a game 〈G,F〉 to be 〈G,F〉 = |G|+ |F|.2

Given some t-type game (V0, V1, A0, A1, E0, E1, v0,F), a strategy for player 0 is a function f :
(A0;A1)

∗ → A0, and a strategy for player 1 is a function f : (A0;A1)
∗A0 → A1, both mapping prefix

decision sequences to an action to be chosen next. A decision sequence ρ = ρ00ρ
1
0ρ

0
1ρ

1
1 . . . is said to be

in correspondence to a strategyf for player p if for every i ∈ N0, we have ρpn = f(ρ00ρ
1
0 . . . ρ

1−p
n+p−1).

A strategy is winning for player p if all plays in the game that are induced by some decision sequence
that is in correspondence to f are winning for player p. It is a well-known fact that for the winning
condition types given above, for all possible game arenas, there exists a winning strategy for precisely
one of the players [11]. Winning strategies are also called accepting in the word automaton case. We

2As in this paper, we are only interested in the borderline between NP-complete problems and those that are in P (assuming
P6=NP), we can safely ignore the fact that an explicit encoding of F might actually be slightly bigger.

5

2 Preliminaries

call a state v ∈ V0 winning for player p if changing the initial state to v makes or leaves the game
winning for player p. Likewise, a state v′ ∈ V1 is called winning for player p if a modified version
of the game that results from introducing a new initial state with only one transition to v′ is (still)
winning for player p.

2.2 Strategy types

In this this work, we are concerned with positional, finite-memory and stand-alone strategies. These
all have finite representations which induce strategy functions f of the general type stated above. By
abuse of terminology (and following the commonly used definitions in the literature) we call both the
finite representation as well as f a strategy.

Positional strategies: A positional strategy for player p in a game (V0, V1, A0, A1, E0, E1, v0,F)
is finitely represented by a partial function f ′ : Vp ⇀ Ap that maps each vertex of the player to an
action that is chosen by the player whenever the vertex is visited. The general strategy f induced by
f ′ is defined as:

f(ρ00ρ
1
0 . . . ρ

1−p
n) = f ′(E1−p(. . . E1(E0(v0, ρ

0
0), ρ

1
0), . . . , ρ

1−p
n))

In order to assure that f is well-defined, we require that for every position v ∈ Vp that is in the domain
of f ′ and every action a ∈ A1−p of the other player, E1−p(Ep(v, f(v)), a) is also in the domain of f .
If a game arena is of safety-, Büchi-, co-Büchi- or parity-type, then there exists a winning positional
strategy for a player if and only if there exists some winning strategy for the same player [11]. This
fact also holds for player 0 in Rabin games and player 1 in Streett games. Given a positional strategy
f ′ : Vp ⇀ Ap, by |f ′| we denote the size of the domain of f ′ (i.e., the size of the subset of Vp for
whose elements e, f ′(e) is defined).

Finite-memory strategies: A finite-memory strategy for player p in a game (V0, V1, A0, A1, E0,
E1, v0,F) is finitely represented by a tuple S = (S, s0, f

′, f ′M) for some state set S, some functions
f ′ : S × Vp ⇀ Ap and f ′M : S × Vp → S and some initial state component s0. For p = 0, we have
s0 ∈ S whereas for p = 1, we have s0 : V1 → S (such that the initial move of player 0 can be taken
into account for the initial memory content).

Intuitively, a finite-memory strategy has some finite memory with domain S that it updates using the
function f ′M and the moves of the other player. The behaviour of the player p then not only depends on
the current position as in positional strategies, but also on the memory content. The general strategy
f induced by S is defined as:

f(ρ00ρ
1
0 . . . ρ

1−p
n+p−1) = f ′(f ′′(ρ00ρ

1
0 . . . ρ

1−p
n+p−2), E1−p(. . . E1(E0(v0, ρ

0
0), ρ

1
0), . . . , ρ

1−p
n+p−1))

for the auxiliary function

f ′′(ρ00ρ
1
0 . . . ρ

1−p
n+p−1) = f ′M (f ′′(ρ00ρ

1
0 . . . ρ

1−p
n+p−2), E1−p(. . . E1(E0(v0, ρ

0
0), ρ

1
0), . . . , ρ

1−p
n+p−1))

with f ′′(ε) = s0 if p = 0 and f ′′(ρ00) = s0(E0(v0, ρ
0
0)) if p = 1.

Given such a finite-memory strategy, we define its size to be the size of the domain of f ′.

Stand-alone strategies: Finally, a stand-alone strategy for player 0 is defined as a Moore au-
tomaton [20]M = (Q,A1, A0, δ, L, q0) with some finite set of states Q, some initial state q0 ∈ Q,

6

2 Preliminaries

an input symbol set A1, an output symbol set A0, some transition function δ : Q × A1 → Q and a
labelling function L : Q→ A0.

The corresponding general strategy is defined by f(ρ00ρ
1
0 . . . ρ

1
n) = L(δ(. . . δ(q0, ρ

1
0), . . . , ρ

1
n)). The

definition for player 1 is equivalent, except that the automaton model is then of Mealy [20] type. The
size of a finite memory strategy is defined to be the number of states in the Moore/Mealy automaton.

2.3 A note on the definitions of games and strategies

Note that the definitions of the concepts given above differ between the works in the literature. How-
ever, except for the Muller winning condition, the game model given above allows a polynomial
re-encoding into the other commonly used models (where, for example, the positions of player 1 that
occur infinitely often along runs are also taken into account for determining whether a play is winning,
or there is a set of initial positions instead of a single position given, etc.), making the hardness proofs
and approximation algorithms in the next sections valid for these models as well.

2.4 Strategy finding algorithms and their approximation quality

Given a game graph G and some value n ∈ N, the decision version of finding small winning arena-
based or stand-alone strategies, accepting lassos or witnesses (which are accepting by definition) is to
decide whether there exists a winning arena-based or stand-alone strategy, accepting lasso or witness
of size at most n or not. We say that some algorithm approximates one of these problems within some
function g : N→ N if it always returns false whenever there does not exist a strategy of size g(n) and
returns true if there exists a strategy of size at most n. In the other cases, the result of the algorithm
is unconstrained.

The construction version of the problem is defined likewise. Given a game graph G, the construction
version of finding small arena-based or stand-alone strategies, lassos or witnesses is to decide whether
there exists an arena-based or stand-alone strategy, lasso or witness of size (at most) n and to construct
such a strategy/lasso/witness if it exists. We say that some algorithm approximates one of these
problems within some function g : N → N if it always returns that no such strategy exists whenever
there does not exist a strategy/lasso/witness of size g(n) and returns a strategy of size at most g(n)
if there exists one of size n. In the remaining cases, the algorithm may either return a valid winning
strategy/lasso/witness of size not more than g(n) or return no such certificate.

We say that an algorithm approximates the minimal strategy/lasso/witness size within some con-
stant c if it approximates the minimal strategy/lasso/witness size within g(n) = c ·n. For the hardness
and non-approximability results, we assume that P 6=NP (otherwise the decision versions of all prob-
lems discussed in this paper are solvable in polynomial time).

2.5 On positional and finite-memory strategies

In the introduction, we justified grouping positional and finite-memory strategies into arena-based
strategies by the claim that for game types that are memoryless determined, adding memory to strate-
gies does not change the size of the smallest winning strategy in a game. We say that a game type is
memoryless determined if for every game with such a winning condition, the existence of a winning
strategy implies the existence of a winning positional strategy.

Theorem 1. In Rabin games and their special cases, the sizes of the smallest positional strategy for
player 0 and the smallest finite-memory strategy for player 0 coincide.

7

3 An overview of the results

Proof. Let A = (V0, V1, A0, A1, E0, E1, v0,F) be a Rabin game and S = (S, s0, f
′, f ′M) be a finite-

memory strategy that is winning for player 0. As S is winning, it makes sure that along a play from
v0 that is in correspondence to S, only vertices that are winning for player 0 can be visited. As a
consequence, we can assume without loss of generality that the domain of f ′ contains only vertices
of A that are winning for player 0 (as otherwise we can simply drop non-winning positions from the
domain).

Now consider a game A′ that corresponds to the restriction of A to the vertices that can be visited
along some path from the initial vertex ofA when player 0 follows the strategy S. Since S is winning,
A′ is winning and the number of player 0-vertices inA′ is c = |{q ∈ V0|∃s ∈ S : f ′(s, q) is defined}|.
However, as A′ is still a Rabin game (or of a type that is a special case of Rabin acceptance), which
always permit memoryless winning strategies, it is also guaranteed that A′ has a memoryless strategy
of size at most c ≤ |f ′|. As such a strategy can be projected back to a corresponding strategy in A,
the claim follows.

As a consequence, when examining the hardness of the problems of finding smallest arena-based
strategies in games, it suffices to only consider positional strategies for Rabin games and their special
cases, and for the remaining types, for which memoryless determininancy does not hold, to use finite-
memory strategies.

It should be noted that from a theoretical point of view, for the approximation hardness of the
problems, this conclusion cannot be drawn as allowing memory might make approximating the size
of the smallest winning strategy easier. However, in the hardness proofs in this paper and in [9], the
reductions performed immediately give rise to the insight that this is not the case.

3 An overview of the results

The problems of finding short lassos in automata and small strategies in games discussed in this paper
are all contained in the complexity class NP (which is proven in Section 4). For Streett games, which
are co-NP-complete to solve, and Muller games, which require an exponential amount of memory in
general [8], we assume a unary encoding of the strategy size to make the problem be contained in NP.

It remains to answer the question which (approximation) problems in this context are NP-complete
and which are solvable in polynomial time. Many of the theorems cited or given in the following
sections to answer this question have implications for multiple game/automaton models discussed
here. For example, hardness results for the one-player case carry over to the two-player case. Also,
hardness results for one winning condition type carry over to the more general winning condition
types that do not require a super-polynomial re-encoding. Likewise, algorithms for game solving can
also be used for special cases. Thus, to aid the reader in seeing all consequences of the individual
theorems, we give an overview of the results here and provide Table 1 that surveys all results.

3.1 Summary of the results in [9]

We start by re-stating the results in [9] that contribute to the overview below.

Theorem 2 ([9], Section 3.1). Finding shortest accepting lassos in Rabin automata is doable in
polynomial time.

Theorem 3 ([9], Theorem 2). The size of a shortest accepting lasso in generalised Büchi automata is
NP-hard to approximate within any constant.

8

4 Finding small winning strategies in games is in NP

Theorem 4 ([9], Theorem 4). The size of a shortest accepting lasso in Muller automata is NP-hard
to approximate within 321

320 − ε for every ε > 0.

Theorem 5 ([9], Theorem 5). Finding an accepting lasso of size not more than dlog2(|F1|)e times
the length of a shortest accepting lasso for the largest element F1 of the acceptance component in a
Muller automaton is possible in polynomial time.

Theorem 6 ([9], Theorem 6 and its discussion). The size of a shortest witness in a safety or Muller
automaton is NP-hard to approximate within any polynomial function.3

Theorem 7 ([9], Theorem 7). Let c > 1 and Σ be some fixed finite alphabet. Given some ω-automaton
A = (Q,Σ, q0, δ,F) with any of the acceptance types considered in this paper, computing a word uvω

such that |u| + |v| is not longer than cn for n being the minimal witness length can be done in time
polynomial in |A|.

3.2 New results in this report

We add the following hardness results to the aforementioned facts of [9] in this report:

• Theorem 11: The size of a smallest winning arena-based strategy in a safety or Muller game is
NP-hard to approximate within any constant.

• Corollary 12: For any strictly increasing function g : N0 → N0, approximating the size of a
smallest winning arena-based strategy in Rabin games within g is NP-hard.

We also contribute an approximability result:

• Corollary 14: Approximating the size of a smallest winning arena-based strategy for player 0 in
parity games with a constant number of colours (and their special cases) within any exponential
function can be performed in time polynomial in the size of the game if the sets of actions for
both players are fixed.

4 Finding small winning strategies in games is in NP

In this section, show that the problem of finding small winning strategies for various winning condition
types is contained in NP. We consider the decision versions of the problems here, i.e., given a bound
b and a game G, we check if there exists a strategy for player 0 in G that is winning and has a size of
at most b.

In fact, for showing that this problem is in NP (i.e., that it can be solved by a non-deterministic
Turing machine in polynomial time), it suffices to show that checking whether a given strategy is
valid is solvable in polynomial time (in the size of the game) as, given a bound b, the strategy can
be guessed by the non-deterministic Turing machine in time polynomial in b. For Streett and Muller
winning conditions in two-player games, we assume a unary encoding of the bound b in order to
make sure that the number of bits that have to be guessed by the non-deterministic Turing machine

3Note that in principle, Theorem 6 from [9] does not directly apply as in [9], the automata are non-deterministic whereas
the 1-player games in this report correspond to deterministic automata. However, the automaton built in Theorem 6 of
[9] is actually deterministic and thus the Theorem is applicable here as well. The other results are not affected by this
mismatch as they are concerned with shortest lassos (for which non-determinism does not matter) or are approximability
results, for which determinism can only make the situation easier.

9

4 Finding small winning strategies in games is in NP

Table 1: Overview of the complexity results of the problems of finding small winning strategies, ac-
cepting lassos and witnesses for games and automata. All problems under consideration are
contained in NP (for Streett and Muller two-player games, we assume a unary encoding of
the strategy size). In this table, we only consider polynomial-time algorithms and assume
that P6=NP. The symbol Q denotes the state set of an automaton under concern.

One-player games Two-player games

A
re

na
-b

as
ed

st
ra

te
gi

es

Safety, Büchi, co-Büchi and pa-
rity winning cond.

solvable precisely in
polynomial time

not approximable within
any constant, approximable
within every exponential
function for fixed action sets

Rabin winning cond. not approximable within any
strictly increasing function

Generalised Büchi winning
cond.

not approximable within
any constant, approxi-

not approximable within any
constant

Streett winning cond. mable within every ex-
ponential function for a
fixed alphabet

Muller winning cond. not approximable within
321
320 − ε, approximable
within plog2 |Q|q

St
an

d-
al

on
e

st
ra

te
gi

es

Safety, Büchi and co-Büchi win-
ning cond.

not approximable within
any polynomial, appro-
ximable within every ex-
ponential function for a

not approximable within any
polynomial, approximable
within every exponential
function for fixed action sets

Generalised Büchi, Parity, Ra-
bin, Streett and Muller winning
cond.

fixed alphabet not approximable within any
polynomial

is only polynomial in the input size. As for the other game types (safety, Büchi, co-Büchi, parity,
Rabin and generalised Büchi two-player games, and Streett and Muller one-player games), there exist
trivial upper bounds on the sizes of minimal strategies (for generalised Büchi winning conditions in
two-player games: the number of positions in the game times the number of acceptance sets; for the
remaining acceptance types in two-player games, the number of positions in the game; for Streett and
Muller automata: at most the square of the number of states) that are only polynomial in the size of
the input, we do not need to restrict the encoding of b in order to obtain a non-deterministic algorithm
that runs in time polynomial in the input size. Note that due to co-NP-completeness of Streett game
solving and the fact that winning strategies in a Streett game might require an exponential amount of
memory [8], a non-binary encoding is necessary for the correctness of the claim unless co-NP=NP.

For checking whether the guessed strategies are correct, we use the following simple facts:

• Given a two-player game and a positional strategy f ′ for player 0, it can easily be checked
whether the strategy is structurally valid, i.e., if for every v ∈ V0 reachable on some play
in correspondence with f ′, f ′(v) and E0(v, f

′(v)) are defined. Also, the computation of the
product of the game and the strategy that results from stripping all choices for player 0 that do

10

4 Finding small winning strategies in games is in NP

not correspond to the strategy is easy. Note that the resulting game is a one-player game for
player 1.

• Given a two-player game and a finite-memory strategy for player 0, we can compute a one-
player game in which player 0’s decisions are fixed by taking the product state space of the
game graph and the memory automaton in time polynomial in the size of the game and the
memory automaton. This product automaton contains a non-accepting play if and only if player
0’s strategy is not winning.

• Given a two-player game and a stand-alone strategy for player 0, we can compute a one-player
game in which player 0’s decisions are fixed by taking the product state space of the game graph
and player 0’s strategy automaton in time polynomial in the size of the game and the strategy.
This product automaton contains a non-accepting play if and only if player 0’s strategy is not
winning.

• For every reachable vertex in a game, we can check for the existence of a cycle that contains
the position and is winning for player 1 in polynomial time. By duality, for Rabin winning con-
ditions, this follows from the existence of efficient emptiness checking algorithms for Streett
word automata (see, e.g., [12]). Likewise, for Streett winning conditions, we check for Rabin
automaton emptiness, which can also be done in polynomial time (see Theorem 2). For the
simpler winning conditions, the respective result follows from the results for Rabin and Streett
winning conditions (with only polynomial blow-up for changing the representations accord-
ingly). For Muller winning conditions, we can use the recently found polynomial algorithm for
solving Muller games [14] to check if the game is winning for player 1.

So, a (non-deterministic) algorithm for solving the problem of checking if there exists some arena-
based strategy of size b can be given as follows:

1. Guess some finite-memory strategy that has the memory state set {1, . . . , b}.

2. Check that the strategy has size b. If this is not the case, return “no” as the answer. Otherwise
build the product game.

3. For Muller games, use the polynomial algorithm for solving the game to check if the guessed
strategy is winning. Otherwise, interpret the resulting game as word automaton (as the choices
of one player have already been resolved) and check for emptiness for the dual acceptance
condition. If and only if its language is empty, return “yes” as the answer.

For stand-alone strategies, the problem can be solved as follows:

1. Guess some suitable Moore automaton A that represents the strategy with b states.

2. Compute the product game of A and the original game graph that is empty if and only if A is
winning for player 1.

3. Like in the arena-based strategy case, return “yes“ if and only if the resulting one-player game
is winning for player 0.

It remains to be shown how the product games can be computed. We only give the construction
for the case of stand-alone strategies and Rabin games here. The other cases can be performed analo-
gously.

11

5 Arena-based strategies in games

Lemma 8. Given some Rabin-type game G = (V0, V1, A0, A1, E0, E1, v0,F) and a stand-alone strat-
egy M = (Q,A1, A0, δ, L, q0), we can construct a one-player Rabin game G′ = (V ′0 , V

′
1 , A0, A1, E

′
0,

E′1, v
′
0,F ′) that is winning for player 0 if and only if M is a winning strategy in G as follows:

• V ′0 = Q× V0, V ′1 = Q× V1, v′0 = (q0, v0)

• For all (q1, v1) ∈ V ′0 and a ∈ A0, we have E′0((q1, v1), a) = (q1, E0(v1, a)) if L(q1) = a and
E′0((q1, v1), a) is undefined otherwise.

• For all (q1, v1) ∈ V ′1 and a ∈ A1, we have E′1((q1, v1), a) = (δ(q1, a), E1(v1, a)).

• For F = {(B1, C1), . . . , (Bn, Cn)}, F ′ = {(Q×B1, Q× C1), . . . , (Q×Bn, Q× Cn)}.

Proof. The game built as described above essentially follows the paths induced by the strategy in the
game graph without restricting the possible moves of player 1. Plays that are winning for player 0 G′
correspond bijectively to winning plays for player 0 in G using the strategy M .

We obtain as a summary:

Corollary 9. Given some value b and some game G with safety, Büchi, co-Büchi, generalised Büchi,
parity, Rabin, Streett or Muller winning condition, the problem of deciding whether there exists a
stand-alone or arena-based strategy of size b in G that is winning for player 0 is contained in the
complexity class NP (for a unary encoding of b in the case of Streett or Muller two-player games).

5 Arena-based strategies in games

There exists a theorem by Chatterjee et al. [4] that proves that there exists no polynomial-time approx-
imation scheme (PTAS) for finding small positional strategies in safety games. As safety games are a
special case of parity, Büchi, co-Büchi, generalised Büchi, Rabin and Streett games, the NP-hardness
result also applies to these cases. In this paper, we strengthen the result that the problem cannot be
approximated within every constant (> 1) in polynomial time to the fact that the problem cannot even
be approximated within any constant in polynomial time. We follow the same reduction idea as in
[4], but deviate by performing the hardness proving task by reducing the Ek-Vertex-Cover problem
onto finding small positional strategies.

Definition 10 (Ek-Vertex-Cover). A k-uniform hypergraph is a 2-tuple G = 〈V,E〉 such that V is a
finite set and E ⊆ 2V such that all elements in E are of cardinality k. Given a k-uniform hypergraph
H = 〈V,E〉, the Ek-Vertex-Cover problem is to find a subset V ′ ⊆ V of minimal cardinality such
that for all e ∈ E: e ∩ V ′ 6= ∅.

It has been proven that approximating the minimal size of an Ek-Vertex-Cover within a factor of
(k − 1− ε) for some ε > 0 is NP-hard [6].

Theorem 11. For every b ∈ N, the problem of approximating the size of a smallest arena-based
winning strategy in a safety or Muller game within a factor of b is NP-hard.

Proof. We reduce the Ek-Vertex-Cover problem H = 〈V,E〉 for k = b+ 4 to our case and construct
a suitable game G = (V0, V1, A0, A1, E0, E1, v0,F) as follows:

• A0 = V ∪ {·}

12

5 Arena-based strategies in games

• A1 = E ∪ {·}

• V0 = {v0,⊥0} ∪ E ∪ V × {0, . . . , |E|}

• V1 = {v1,⊥1} ∪ V × {0, . . . , |E|}

• E0(v0, ·) = v1, E0(e, v) = (v, 0) for all e ∈ E with v ∈ e, E0((v, j), ·) = (v, j + 1) for all
v ∈ V and j < |E|, E((v, |E|), ·) = ⊥1 for all v ∈ V , E0(⊥0, ·) = ⊥1; for the remaining
combinations of v ∈ V0 and a ∈ A0, E0(v, a) is undefined

• E1(v1, e) = e for all e ∈ E, E1((v, j), ·) = (v, j) for all v ∈ V and 0 ≤ j ≤ |E|, E1(⊥1, ·) =
⊥0; for the remaining combinations of v ∈ V1 and a ∈ A1, E1(v, a) is undefined

• For the reduction to the Muller case, F = {⊥0}

Figure 1 gives an example of such a game. Intuitively, player 1 first chooses an edge and player 0 then
selects a vertex that is an element of the edge. Since player 1 can choose any edge and a small arena-
based strategy is to be found, player 0 has to choose her moves strategically wise in order to obtain a
small strategy. The long slides for every vertex amplify the effects of bad decisions of player 0. Note
that in both the safety and Muller game case, we can restrict our attention to positional strategies as
the only vertices of the game that can be visited more than once along a path are ⊥0 and ⊥1, which
form an absorbing strongly connected component.

There exists a one-to-one-correspondence for player 0 between winning strategies and vertex covers
in H = 〈V,E〉. For every vertex cover with j vertices, there exists a corresponding strategy with
precisely (1 + |E|) · j + |E|+ 2 reachable V0-positions. Now assume that there exists some factor-b
polynomial approximation algorithm for finding the smallest winning strategy. Then, for V ′ being
some Ek-Vertex-Cover induced by the strategy found by the algorithm and V ′opt being a smallest Ek-
Vertex-Cover in H (without loss of generality, we can assume that the size of the minimal strategy is
at least b as such small solutions can be enumerated in polynomial time), we can deduce:

2 + |E|+ (|E|+ 1) · |V ′|
2 + |E|+ (|E|+ 1) · |V ′opt|

=
1 + (|E|+ 1) · (|V ′|+ 1)

1 + (|E|+ 1) · (|V ′opt|+ 1)
≤ b ⇒ |V ′|

|V ′opt|
≤ b+ 2 = k − 2

So the existence of a factor b-approximation algorithm for finding small positional strategies in a safety
game would imply the existence of a polynomial k − 2-approximation algorithm for the Ek-Vertex-
Cover problem, which is a contradiction (unless P=NP). Since we can follow this line of reasoning
for all b ∈ N, the claim follows.

In the set of winning conditions considered in this paper, the Rabin condition is a special case as
games with this condition are NP-hard to solve even though they are memoryless determined. This
fact can be exploited in order to obtain an even stronger non-approximability result for games with
this winning condition.

Corollary 12. For any strictly increasing function g : N0 → N0, approximating the size of a smallest
winning arena-based strategy in Rabin games within g is NP-hard.

Proof. This corollary is a direct consequence of the fact that we can reduce the problem of determining
the winner in a n-state Rabin game to approximating the size of a smallest winning arena-based
strategy within g(n).

13

6 Approximation algorithms for hard problems

a b

c d

⇒

Example graph

Example game

v0

v1

{a, b} {a, c} {b, c}

(a, 0)

(a, 0)

. . .

(a, 5)

(a, 5)

(b, 0)

(b, 0)

. . .

(b, 5)

(b, 5)

(c, 0)

(c, 0)

. . .

(c, 5)

(c, 5)

(d, 0)

(d, 0)

. . .

(d, 5)

(d, 5)

{b, d} {c, d}

⊥1

⊥0

Figure 1: Example game construction from an instance of an Ek-Vertex-Cover problem as described in
the proof of Theorem 11. For simplicity, we have chosen k = 2 for this example. Positions
of player 0 are denoted by ellipses whereas rectangles mark the positions of player 1. The
action labels have been omitted.

6 Approximation algorithms for hard problems

In this section, we present a simple scheme for polynomial time algorithms that approximate the min-
imal winning strategy size in some game G = (V0, V1, A0, A1, E0, E1, v0,F) within any exponential
function f(n) = cn (with some c > 1) for some of the combinations of winning condition types
and strategy types, provided that both |A0| and |A1| are fixed (and thus not taken into account for the
complexity considerations).

In particular, the scheme is suitable for all cases in which (1) constructing some (not necessarily
minimal) winning strategy is possible in polynomial time (whenever the game is winning for player
0) and (2) strategies that are exponentially smaller than the worst-case strategy size induced by the
game type can be represented using an amount of memory that is logarithmic in the size of the game.

Condition (1) holds in the case of safety, co-Büchi, Büchi, generalised Büchi and parity two-player
games with a constant number of colours and also for all winning condition types dealt with here for
one-player games.

Condition (2) holds for positional strategies in two-player games as well as for witnesses in one-

14

6 Approximation algorithms for hard problems

player games.
The basic idea of the scheme is to first produce some initial strategy of size polynomial in the size

of the game and then iterate over all exponentially smaller strategies and check if they are winning for
player 0.

As an example for the first step, for finding some positional strategy in a parity game with a constant
number of colours, we can gradually remove positions and edges for player 0 in the game in a random
order and check after each removal whether the remaining game is still winning for player 0 (which
only needs polynomial time for a constant number of colours with current algorithms, see, e.g., [21]).
Whenever this is not the case, we back-track to the respective previous decision and continue with the
next position or edge in the chosen order. When this process finishes, there is necessarily one winning
deterministic strategy left. The currently fastest known automaton emptiness checking procedures for
Streett automata (and thus, also for generalised Büchi automata as a special case) [19, 7] also produce
such a certificate.

For finding small witnesses, we can first compute an accepting lasso and convert it to a witness by
reading the actions along the lasso.

Then, after finding some initial strategy of size n, the algorithm proceeds by iterating over all
strategies of size not more than dlogc ne and check for each of these whether they are winning. If
the number of strategies of this size is only polynomial in the size of the original game structure and
checking if a strategy is winning can be done in polynomial time (which is true for all types considered
here), this steps takes only polynomial time (as the product of two polynomials is a polynomial). As
whenever there exists a strategy of size not larger than dlogc ne, the second step will find it and
whenever this is not the case, we know that the smallest strategy must be of size between n and
dlogc ne, we obtain the exponential approximation quality of this scheme.

It remains to show that in the cases considered above, Condition (2) actually holds, i.e., that the
number of strategies of size dlogc ne is polynomial in |G|.

In positional strategies, only one successor vertex has to be chosen for every reachable vertex of
V0, of which only |A0| many exist. Without loss of generality, we assume that the strategy is given
in some arranged form (e.g., breadth-first order) such that we do not have to guess which states are
reachable in the game. As a consequence, the total number of strategies is (n+ 1) · |A0|dlogc ne, which
is clearly polynomial in |G|.

For witnesses and non-positional lassos, we have to guess dlogc ne many elements of |A0| along
with a splitting position between the first and the second part of the word. Thus, the total number of
strategies is dlogc ne · |A0|dlogc ne, which is clearly polynomial in |G|.

As a result, we obtain:

Corollary 13. Let c > 1 and Σ be some fixed finite alphabet. Given some ω-automaton A =
(Q,Σ, q0, δ,F) with any of the acceptance types considered in this paper, computing a word uvω

such that |u| + |v| is not longer than cn for n being the minimal witness length can be done in time
polynomial in |A|.

Corollary 14. Approximating the size of a smallest winning arena-based strategy for player 0 in parity
games with a constant number of colours (and their special cases) within any exponential function
can be performed in time polynomial in the size of the game if the sets of actions for both players are
fixed.

15

7 Conclusion

7 Conclusion

In this paper, we have discussed the approximation hardness of the problem of obtaining small win-
ning strategies, accepting lassos and witnesses in games and automata with ω-regular winning or
acceptance conditions. Some of the results obtained (including the ones from [9]) are surprising. For
example, while finding short accepting lassos is doable in polynomial time even for the relatively com-
plex Rabin condition, approximating the size of a shortest witness within any polynomial is NP-hard
even for safety automata and thus considerably harder.

In some cases, the results obtained are tight. For example, we have characterised precisely the
approximability of finding shortest witnesses in ω-automata (with a constant-sized alphabet): the
problem is NP-hard to approximate within every polynomial, but approximable in polynomial time
within any exponential function. In other cases, the findings are only the first step in determining
the precise approximation hardness of the problems, as for example in the two-player case for the
Rabin, Streett and Muller winning condition types. Nevertheless, to the best of our knowledge, we
presented the first comprehensive overview of the known results on the problem of obtaining small
winning strategies, accepting lassos and witnesses in games and automata with ω-regular winning or
acceptance conditions, which will hopefully facilitate further research in this area.

From a theoretical point of view, our results show that size bounds imposed on certificates can sig-
nificantly increase the complexity of tasks in verification and synthesis that employ computing such
certificates. As a side remark, in these applications, the game is often represented in a symbolical
form, like for example using reduced ordered binary decision diagrams [3, 26]. For such representa-
tions, the complexity of the problems discussed here might even be higher, but the analysis of such
cases is beyond the scope of this paper.

From an algorithmic point of view, as the problems discussed here are of importance for many
applications such as LTL and ATL model checking or synthesis of finite state systems, the non-
approximability results level the ground for choosing the right approaches for solving these problems
more effectively in the future. As for most cases, the approximability of the problems considered
is quite bad, the practitioner can now conclude that looking into suitable heuristics might be worth-
while doing. For example, by encoding the problem into a SAT instance for applying modern SAT
solvers, the problem could be tackled precisely. Automatic optimization of such solvers to this setting
could further increase the performance (see, e.g., [15]). On the other hand, as for most applications,
it suffices to obtain relatively small, but not necessarily smallest strategies, efficient heuristics might
be more suitable for these tasks. Especially when it comes to symbolically represented game graphs,
heuristic approaches that do not require representing the game graph in an explicit way appear to be
promising.

References

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[2] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin
Weiglhofer. Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci.,
190(4):3–16, 2007.

[3] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

16

References

[4] Krishnendu Chatterjee, Luca de Alfaro, and Rupak Majumdar. The complexity of coverage.
In G. Ramalingam, editor, APLAS, volume 5356 of Lecture Notes in Computer Science, pages
91–106. Springer, 2008.

[5] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xudong Zhao. Efficient gener-
ation of counterexamples and witnesses in symbolic model checking. In DAC, pages 427–432,
1995.

[6] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered PCP
and the hardness of hypergraph vertex cover. SIAM J. Comput., 34(5):1129–1146, 2005.

[7] Alexandre Duret-Lutz, Denis Poitrenaud, and Jean-Michel Couvreur. On-the-fly emptiness
check of transition-based Streett automata. In Zhiming Liu and Anders P. Ravn, editors, ATVA,
volume 5799 of Lecture Notes in Computer Science, pages 213–227. Springer, 2009.

[8] Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In LICS, pages 99–110, 1997.

[9] Rüdiger Ehlers. Short witnesses and accepting lassos in ω-automata. In Adrian Horia Dediu,
Henning Fernau, and Carlos Martı́n-Vide, editors, LATA, volume 6031 of Lecture Notes in Com-
puter Science, pages 261–272. Springer, 2010.

[10] Paul Gastin and Pierre Moro. Minimal counterexample generation for SPIN. In Dragan Bosnacki
and Stefan Edelkamp, editors, SPIN, volume 4595 of Lecture Notes in Computer Science, pages
24–38. Springer, 2007.

[11] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

[12] Monika Rauch Henzinger and Jan Arne Telle. Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In Rolf G. Karlsson and Andrzej Lingas,
editors, SWAT, pages 16–27. Springer, 1996.

[13] Michael Holtmann and Christof Löding. Memory reduction for strategies in infinite games. In
Jan Holub and Jan Zdárek, editors, CIAA, volume 4783 of Lecture Notes in Computer Science,
pages 253–264. Springer, 2007.

[14] Florian Horn. Explicit muller games are PTIME. In Ramesh Hariharan, Madhavan Mukund,
and V. Vinay, editors, FSTTCS, volume 2 of LIPIcs, pages 235–243. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2008.

[15] Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. Boosting verification by auto-
matic tuning of decision procedures. In FMCAD, pages 27–34. IEEE Computer Society, 2007.

[16] Orna Kupferman, Yoad Lustig, Moshe Y. Vardi, and Mihalis Yannakakis. Temporal synthesis for
bounded systems and environments. In Thomas Schwentick and Christoph Dürr, editors, STACS,
volume 9 of LIPIcs, pages 615–626. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[17] Orna Kupferman and Sarai Sheinvald-Faragy. Finding shortest witnesses to the nonemptiness of
automata on infinite words. In Christel Baier and Holger Hermanns, editors, CONCUR, volume
4137 of Lecture Notes in Computer Science, pages 492–508. Springer, 2006.

17

References

[18] Orna Kupferman and Moshe Y. Vardi. Church’s problem revisited. Bulletin of Symbolic Logic,
5(2):245–263, 1999.

[19] Timo Latvala and Keijo Heljanko. Coping with strong fairness. Fundam. Inform., 43(1-4):175–
193, 2000.

[20] Silvia M. Müller and Wolfgang J. Paul. Computer architecture: complexity and correctness.
Springer, 2000.

[21] Sven Schewe. Solving parity games in big steps. In Vikraman Arvind and Sanjiva Prasad,
editors, FSTTCS, volume 4855 of Lecture Notes in Computer Science, pages 449–460. Springer,
2007.

[22] Stefan Schwoon and Javier Esparza. A note on on-the-fly verification algorithms. In Nicolas
Halbwachs and Lenore D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer
Science, pages 174–190, 2005.

[23] Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL, 7(1):103–124, 1999.

[24] Wolfgang Thomas. Handbook of Theoretical Computer Science – Vol. B: Formal Models and
Semantics, chapter Automata on Infinite Objects, pages 133–191. MIT Press, 1994.

[25] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proceedings of
the VIII Banff Higher order workshop conference on Logics for concurrency: structure versus
automata, pages 238–266. Springer-Verlag New York, Inc., 1996.

[26] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

18

	Introduction
	Scope of this paper
	Related work

	Preliminaries
	Games
	Strategy types
	A note on the definitions of games and strategies
	Strategy finding algorithms and their approximation quality
	On positional and finite-memory strategies

	An overview of the results
	Summary of the results in [9]
	New results in this report

	Finding small winning strategies in games is in NP
	Arena-based strategies in games
	Approximation algorithms for hard problems
	Conclusion

