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Abstract. Synthesis of finite state systems from full linear time tem-
poral logic (LTL) specifications is gaining more and more attention as
several recent achievements have significantly improved its practical ap-
plicability. Many works in this area are based on the Safraless synthesis
approach. Here, the computation is usually performed either in an ex-
plicit way or using symbolic data structures other than binary decision
diagrams (BDDs). In this paper, we close this gap and consider Safra-
less synthesis using BDDs as state space representation. The key to this
combination is the application of novel optimisation techniques which
decrease the number of state bits in such a representation significantly.
We evaluate our approach on several practical benchmarks, including a
new load balancing case study. Our experiments show an improvement
of several orders of magnitude over previous approaches.

1 Introduction

Ensuring the correctness of a system is a difficult task. Bugs in manually con-
structed hard- or software are often missed during testing. To remedy this prob-
lem, two lines of research have emerged. The first one deals with the verification
of systems that have already been built and spans topics such as process cal-
culi and model checking. The second line concerns the automatic derivation of
systems that are correct by construction, also called synthesis. In both cases,
the specification of the system needs to be given, but we can save the work of
constructing the actual system in the case of synthesis.

Unfortunately, the complexity of synthesis has been proven to be rather high.
For example, when given a specification in form of a property in linear time tem-
poral logic (LTL), the synthesis task has a complexity that is doubly-exponential
in the size of the specification [17]. Recently, it has been argued that this is how-
ever not a big problem [18] as realisable practical specifications typically have
implementations that are small, which can be exploited. This observation is used
in the context of bounded synthesis [18, 8], which builds upon the Safraless syn-
thesis principle [14]. Here, the LTL specification is converted to a universal co-
Büchi word or tree automaton, which is then, together with a bound b ∈ IN, used
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for building a safety game such that winning strategies in the game correspond to
implementations satisfying the specification. The bound in this setting describes
the maximum allowed number of visits to rejecting states in the co-Büchi au-
tomaton. If there exists an implementation satisfying a given specification, then
there exists some bound such that the resulting game is winning.

In practice, the bound required is usually rather small, often much smaller
than the number of states in the smallest implementation. This leads to im-
proved running times of implementations following this approach. Consequently,
all modern tools for full LTL synthesis publicly available nowadays build upon
Safraless synthesis. The first of these, named Lily [11], performs the realisability
check in an explicit way. Recently, a symbolic algorithm based on antichains has
been presented [8], showing a better performance on larger specifications. Sur-
prisingly, the usage of binary decision diagrams (BDDs), a technique that has
skyrocketed the size of the systems that can be handled by model checking tools
[15], seems to be unconsidered in this context so far. A possible explanation for
this is that the safety games constructed in the bounded synthesis context con-
tain a lot of counters with dependencies between them in the transition relation.
It has been observed that this can tremendously blow-up the size of BDDs [22,
19, 3]. Thus, for success using this technique, it is a central requirement that
efficient techniques for reducing the number of counters are being used. In this
paper we investigate this problem and present such techniques. By taking them
together, we can improve upon the performance of previous approaches to full
LTL synthesis by several orders of magnitude.

In particular, we show how to split a specification, consisting of assumptions
about the environment and guarantees that the system needs to fulfill, into safety
and non-safety parts, which can be handled separately in the synthesis game.
As for safety properties, no counters are necessary, this reduces the computation
time significantly and allows utilising a major strength of BDDs: efficient dealing
with automata that run in parallel. Since it has been argued that typical spec-
ifications found in practice are mostly of the form

∧
a∈A a →

∧
g∈G g for some

sets of assumptions A and guarantees G [2, 20], both containing LTL formulas,
we design our technique to be adapted to this case. As a second contribution, we
discuss the efficient encoding of the safety and non-safety parts in BDD-based
games. Finally, we show how to adapt the techniques presented to checking the
unrealisability of a given specification in an efficient way. We evaluate our ap-
proach on the benchmarks from [11, 8] and also present a new, more complex
load balancing benchmark that allows for a more meaningful discussion of the
practical applicability of our approach.

This paper is structured as follows. In the next section, we briefly discuss the
preliminaries and give suitable references for those readers who are not familiar
with the fundamentals of bounded synthesis. Then, we show how a specification
can be split into safety and non-safety parts without losing soundness or com-
pleteness of the synthesis procedure. Section 4 describes how to efficiently encode
both parts in a symbolic state space. In Section 5, we continue with the expla-
nation of how the unrealisability of a specification can also be checked with our



approach. Section 6 contains the experimental results of running our prototype
tool on the benchmarks from [11] and [8] as well as on a novel load-balancing
system case study. We conclude with a summary.

2 Preliminaries

This section describes the fundamentals of the bounded synthesis approach. We
choose the notation in a way such that it fits best to the presentation of the new
concepts in the remaining sections.

Mealy automata: For the representation of systems to be synthesized, a suit-
able computation model is required. In this work, we use Mealy automata [16].
Formally, a Mealy automaton M = (S, I,O, δ, sin) is defined as a 5-tuple with
the set of states S, the input set I, the output set O, the transition function
δ : (S × I)→ (S ×O) and the initial state sin ∈ S. For the scope of this paper,
we assume that the sets S, I and O are finite. We set I = 2API for some input
proposition set API and O = 2APO for some output proposition set APO as this
facilitates the description of properties of Mealy automata with temporal logic.

Given some input stream d = d1d2 . . . ∈ Iω to a Mealy automaton, we define
the computation of the automaton induced by d as π = s0s1s2 . . . ∈ Sω s.t.
s0 = sin and for all rounds j ∈ IN0, we have δ(sj , dj+1) = (sj+1, o) for some
o ∈ O. Furthermore, the output of A over d is defined as ρ = ρ1ρ2 . . . such
that for all j ∈ IN0, we have δ(sj , dj+1) = (sj+1, ρj+1). We furthermore say that
w = (d1 ∪ ρ1)(d2 ∪ ρ2) . . . is a word induced by M.

Linear time temporal logic (LTL) & universal co-Büchi word au-
tomata: For the specification of a system to be synthesized, some description
logic is necessary. Linear time temporal logic (LTL) has been the predominantly
used such logic in previous works. It allows the usage of the Safraless synthesis
approach, which circumvents the need for constructing deterministic automata
from the specification that occurs in other synthesis methodologies.

Due to space restrictions, we do not define LTL and its semantics here but
rather refer to [7]. Formulas in LTL can use the temporal operators “G” (glob-
ally), “F” (finally), “X” (next time) and “U” (until). We say that some automa-
ton M satisfies an LTL formula ψ if for all words w = w1w2 . . . induced by M,
we have w |= ψ. Some LTL formulas are also called safety properties; this is the
case if for every word w not satisfying the property, there exists some prefix w′

of w such that no word having the same prefix satisfies the property.
Formulas in LTL can be transformed into equivalent universal co-Büchi word

automata (UCW), i.e., given an LTL formula ψ, a UCW A of size at most
exponential in |ψ| can be obtained such that for every Mealy automatonM, all
runs induced by M are accepted by A if and only if all words induced by M
satisfy ψ.

We define universal co-Büchi word automata as five-tuples A = (Q,Σ, δ, qin,
F ) with a set of states Q, an alphabet Σ, a transition function δ : Q×Σ → 2Q,
an initial state qin ∈ Q and some set of rejecting states F ⊆ Q. Given a word



w = w1w2 . . . ∈ Σω, we say that a sequence π = π0π1π2 . . . ∈ Qω is a run of A
over w if π0 = qin and for all j ∈ IN0, πj+1 ∈ δ(πj , wj+1). A word w is accepted
by A if for all runs π of A over w, we have inf(π) ∩ F = ∅ for inf denoting the
function that maps a sequence onto the set of elements that occurs infinitely
often in it. We say that a Mealy automaton M is accepted by A if all words
induced by M are accepted by A. Due to the finiteness of Mealy automata, if
M is accepted by A, there exists a finite upper bound b(M,A) on the number of
rejecting states visited on the runs of A on any word induced byM. This bound
is always at most |F | · |S| for S being the state set of the Mealy automaton [18].

Safety games: Given some universal co-Büchi word automaton A = (Q,Σ, δ,
qin, F ) with Σ = I ×O and some bound b ∈ IN, we can build a two-player safety
game G such that player 1 wins the game if and only if there exists some Mealy
automaton M over the inputs I and outputs O with b(M,A) ≤ b [18].

Formally, we define safety games as tuples G = (V,Σ0, Σ1, δ, vin, vF ) with
some vertex set (also called state space in the context of synthesis) V , some
action set Σ0 for player 0, some action set Σ1 for player 1, some total edge
function δ : V ×Σ0×Σ1 → V , some initial vertex vin and some final vertex vF .
We require that vF is absorbing, i.e., for all x ∈ Σ0×Σ1, δ(vF , x) = vF . A decision
sequence is an infinite sequence ρ = ρ0ρ

′
0ρ1ρ

′
1 . . . such that for all j ∈ IN0, ρj ∈ Σ0

and ρ′j ∈ Σ1. Such a decision sequence induces an infinite play π = π0π1 . . . in
G such that π0 = vin and for all j ∈ IN0, we have δ(πj , ρj , ρ

′
j) = πj+1. We call

plays winning for player 1 (the system player) if there does not exist some j ∈ IN
such that πj = vF . For the scope of this paper, we also need reachability games;
in these, player 1 wins a play if there exists some j ∈ IN such that πj = vF .

Safety games are memoryless determined, i.e., if and only if player 1 wins the
game, there exists some function f : V ×Σ0 → Σ1 such that for all decision se-
quences ρ = ρ0ρ

′
0ρ1ρ

′
1 . . . with corresponding plays π = π0π1 . . ., if ρ′j = f(πj , ρj)

for all j ∈ IN0, then π is winning for player 1. The situation for player 0 is dual.
Given some bound b ∈ IN, some input and output alphabets Σ0/Σ1 and some

universal co-Büchi word automaton A = (Q,Σ, δ, q0, F ) with Σ = Σ0 ×Σ1, the
corresponding (classical) synthesis game is defined as G = (V,Σ0, Σ1, δ, vin, vF )
with a vertex set V comprising all functions mapping the states in Q onto
{⊥, 0, 1, . . . , b}. The vertices of the game encode in which states of A a run
of the automaton corresponding to the input/output played by the players so
far could be. All such states have a numeral value assigned, whereas the others
are mapped to ⊥. The numeral value represents how many rejecting states have
been visited at most along such a run so far (the so-called counters). For details
of this approach, the reader is referred to [18].

We have defined safety games in a way such that we can efficiently extract
a Mealy automaton M satisfying A from a winning strategy f . We define the
winning region of G to be the largest subset of vertices in V such that for setting
vin to any of these, the game is winning for player 1.

Binary decision diagrams: For representing sets of vertices and the transition
relation in safety games symbolically, we use reduced ordered binary decision
diagrams (BDDs) [4, 5], which represent characteristic functions f : 2V → B



for some finite set of variables V . Since they are well-established in the context
of formal verification, we do not describe their details here but rather treat
them on an abstract level and state the operations on them that we use. For
a comprehensive overview, see [5]. Given two BDDs f and f ′, we define their
conjunction and disjunction as (f ∧ f ′)(x) = f(x) ∧ f ′(x) and (f ∨ f ′)(x) =
f(x)∨f ′(x) for all x ⊆ V . The negation of a BDD is defined similarly. Given some
set of variables V ′ ⊆ V and a BDD f , we define ∃V ′.f as a function that maps
all x ⊆ V to true for which there exists some x′ ⊆ V ′ such that f(x′∪(x\V ′)) =
true. Dually, we define ∀V ′.f ≡ ¬(∃V ′.¬f). Given two ordered lists of variables
L = l1, . . . , ln and L′ = l′1, . . . l

′
n of the same length, we furthermore denote

by f [L/L′] the BDD for which some x ⊆ V is mapped to true if and only if
f(x \ {l′1, . . . , l′n} ∪ {li | ∃1 ≤ i ≤ n : l′i ∈ x}) = true.

2.1 Differences to Other Works

In contrast to previous works on Safraless synthesis, we give a simplified presen-
tation here, which relies on universal co-Büchi word automata (UCW) instead
of co-Büchi tree automata [14, 18] or transition-based UCWs [8].

Furthermore, the definition of safety games differs from the one used when
synthesizing Moore automata. First of all, we assume that player 0 (the envi-
ronment) does the first move instead of player 1 (the system player). This way,
the game model corresponds to the behaviour of Mealy automata. This slightly
changes the semantics of the LTL formulas for synthesis. For example, the speci-
fication G(r ↔ g) for the input atomic proposition (AP) set {r} and the output
AP set {g} is realisable, whereas for the reversed order of input and output used
in previous works, it is unrealisable. The intuition of this change is that this
reduces the number of next-time LTL operators necessary for practical specifi-
cations, thus reducing the size of the UCW for the specification and the synthesis
time needed in total. Nevertheless, the techniques presented in this paper are
equally applicable to Moore automata synthesis.

Additionally, the fact that we do not have vertex sets for both players 0 and
1 in the game allows us to simplify the game solving process and also saves
bits for the state sets in a symbolic game solving process. Given a safety game
G = (V,Σ0, Σ1, δ, vin , vF ), we build a BDD Bδ corresponding to δ over the four
lists of variables {pre, in, out , post} such that for all q, q′ ∈ Q, i ∈ Σ1 and o ∈ Σ2,
by abuse of notation, Bδ(q, i, o, q′) = true if and only if δ(q, i, o) = q′ (for some
encoding of the states, inputs and outputs into the BDD variables). Using Bδ

and some BDD BF over the variables in post mapping only vF to true, we can
compute the winning region of G as νX.X ∧ (∀in.∃out , post .(Bδ ∧X[post/pre]∧
(¬BF ))) for ν denoting the greatest fixed point operator.

3 Safety and Non-safety: Splitting the Specification

In this section, we explain how to decompose an LTL specification being subject
to synthesis in a way such that non-safety and safety properties can be treated in



parallel. Recall that we assume that the specification is written in the form ψ =∧
a∈A a→

∧
g∈G g. In the classical bounded synthesis approach, ψ is transformed

to a UCW which in turn is converted to its induced safety game for some given
bound. Here, we propose a slightly different approach. Instead of building one
single game from the specification, we split the latter into parts, build individual
games for each of the parts and then take their parallel composition to obtain a
composite game. This has several advantages:

1. It has been observed [8] that the time to compute a UCW from an LTL
formula is a significant part of the overall realisability checking time. By
splitting the specification beforehand, building a monolithic UCW is avoided,
resulting in a lower total computation time.

2. Taking the parallel composition of multiple game structures can be done in
a relatively efficient way when using BDDs for solving the composite game.

3. The state spaces of games corresponding to safety properties do not need
the counters that are employed in the bounded synthesis approach. Thus, by
decomposing the specification into safety and non-safety parts, we can save
counters, which in turn reduces the computation time further.

In order to obtain a valid decomposition scheme, the resulting game must be
winning for player 1 (the system player) in the same cases as before, i.e., if and
only if either a safety or non-safety assumption is violated or all guarantees are
fulfilled. The technique presented in the following does not preserve the smallest
bound b such that the specification is fulfillable (as the bound depends on the
syntactic structure of the UCW). However, the method proposed is still sound
and complete, i.e., if and only if there exists a bound b such that the safety game
induced by the UCW for the overall specification and b is winning for player
1, there exists some bound for the non-safety part of the specification and the
technique presented in this section such that the resulting game is winning for
player 1.

In [20], the authors propose a method to solve a generalised parity game
for a specification of the form

∧
a∈A a →

∧
g∈G g as stated above successively.

They first build games for the safety assumptions and guarantees, strip the
non-winning parts (for the system player) from them and compose them with
games for the remaining parts of the specification. For completeness of this
methodology, the non-safety assumptions however must not have any effect on
the fulfillability of the safety guarantees. In general, we cannot assume this; we
thus propose a different method here that is based on introducing some kind of
signal into the game that links the safety guarantees and the non-safety part of
the specification.

We start by splitting the specification ψ =
∧
a∈A a →

∧
g∈G g into four

sets of LTL formulas: the safety assumptions As, the safety guarantees Gs, the
non-safety assumptions An, and the non-safety guarantees Gn. Then, we build
a reachability game G1 for the safety assumptions that is won by player 1 if
some assumption in As is violated. For the next step, we add one bit to the
output atomic proposition set of the system to be synthesized; let its name be
safeg. We build a safety game G2 from the safety guarantees Gs that is won



by player 1 if safeg always represents whether one of the safety guarantees has
already been violated. For the non-safety part, we take the modified specification
ψ′ = (

∧
a∈An

a) → (
∧
g∈Gn

g ∧ G(safeg)) and convert it to a UCW A. Given a
bound b ∈ IN and having prepared G1, G2 and A, we can now build the composite
game G:

1. We take A and b and build the corresponding bounded synthesis safety game.
Let its name be G3.

2. We define the overall synthesis game G as the parallel composition of G1,
G2 and G3, i.e., the vertex set is the product of the individual vertex sets
and the transition relation is defined such that the games G1, G2 and G3 are
played in parallel (over the same inputs and outputs). We say that G1, G2
and G3 are components of G.

3. Let q1F , q2F and q3F be the final vertices of the games G1, G2 and G3, respec-
tively. We define a play π in G to be winning for the system player if either
q1F is visited at some point on π or q2F and q3F are never visited.

We obtain the following result:

Theorem 1. For every LTL specification ψ =
∧
a∈A a →

∧
g∈G g, there exists

some bound b ∈ IN such that the composite game G built from ψ and b as defined
above is won by the system player 1 if and only if there exist some bound b′ ∈ IN
such that the (classical) safety synthesis game induced by the UCW corresponding
to ψ and b′ is winning for player 1.

Proof. By examining the possible causes for winning/losing the synthesis games,
the correctness of the claim can easily be seen. ut

Let BF1 be a BDD over the set of variables pre representing the final vertices
of the game G1 and BF2 and BF3 be BDDs over post for the final vertices of G2
and G3, respectively. For Bδ being the BDD representing the transition relation
of G, we can obtain the winning region of player 1 by computing (for µ denoting
the least fixed point operator):

V = µY.Y ∨BF1 ∨ (∀in.∃out , post .Bδ ∧ Y [post/pre])

W = νX.V ∨ (X ∧ (∀in.∃out , post .Bδ ∧X[post/pre] ∧ (¬BF2 ) ∧ (¬BF3 )))

In these equations, V represents the states that are winning due to the fact
that the system player can choose a sequence of decisions such that some safety
assumption is not fulfilled; W is the winning region for player 1 in G.

We can simplify the computation by taking V = BF1 , making the composite
game essentially a safety game. To see this, consider a state in the game in
which some guarantee has just been violated but that is still winning as from
that state onwards, the system player can force the other player into a state in
which also some safety assumption is violated. As the game is finite, there is an
upper bound of k steps for some k ∈ IN on the length of such a bridging path
in the game. By increasing the bound used for building G3 by k, it can be made
sure that qF1 is reached before qF3 is visited, making the game also winning with



the modified definition for V . We use this simplification for our implementation
to be described in Section 6 as it facilitates the extraction of winning strategies
from the game.

4 Encoding Bounded Synthesis in BDDs

The efficiency of solving games using BDDs heavily depends on a smart encoding
of the state space into the BDD bits. As already stated, for a symbolic solution
of a safety game, four groups of BDD variables are needed: two groups for the
game vertices (pre and post), one for the input to the system and one for the
output. As we defined the input as I = 2API and the output as O = 2APO for the
scope of this paper, a straight-forward boolean encoding of I and O for usage in
the BDDs exists: we allocate one BDD bit for each element of API and APO. It
remains to find a suitable encoding for the state space of the game.

First of all, if the state space is the product of some smaller state spaces, we
can parallelise the problem; for example, if V = V1 × V2 × . . . × Vm for some
m ∈ IN, we can find good encodings for each of the state spaces V1, . . . , Vm
individually. We are thus able to handle the state space encodings of G1, G2 and
G3 (as defined in the previous section) separately.

4.1 The Non-safety Part

Recall that in the context of bounded synthesis, the safety game induced by a
UCW for a given bound b has a certain property: the state space consists of all
functions mapping the states of the UCW onto {⊥, 0, 1, . . . , b} for b being the
chosen bound. For each state, we can encode the value the function maps to
individually. For the scope of this paper, we define the following encoding for
this counter set {⊥, 0, 1, . . . , b}: we use plog2(b + 1)q + 1 bits. One bit is used
for representing whether the value equals ⊥, the remaining bits represent the
standard binary encoding of the numeral (if given). Taking an extra bit for the
⊥ value has the advantage of obtaining smaller BDDs in most cases as this value
appears very often in the definition of the transition relation.

We also use and propose two additional tricks. First of all, the games defined
in the previous section are built in a way such that they permit one type of non-
determinism: we can allow the system player to choose a successor state from a
set of possible ones. If the system player can do this in a greedy way, i.e., the
non-determinism can be resolved after each input/output cycle without losing
completeness, the game semantics remain unchanged. For bounded synthesis,
we can thus relax the transition relation slightly: we allow the system player to
increase her counters in addition to the counter increases imposed by visits to
rejecting states. We also allow her to set some counters from ⊥ to some arbitrary
other value. This non-minimality [1] of the transition relation typically decreases
the size of its symbolic encoding. A similar idea was also pursued by Henzinger
et al. [10] for simplifying the process of automaton determinisation.



As a second trick, we can use some automata-theoretic argument for not
having to store counters for certain states. Let a strongly connected component
(SCC) in a UCW be a maximal set of states such that there exist sequences of
transitions between all pairs of states in the SCC. It is well-known that every
infinite run of a UCWA enters a strongly connected component inA after a finite
number of steps that it never leaves again. It is accepting if and only if in this
last SCC, rejecting states are visited only finitely often. This fact gives rise to an
optimisation idea: for transient states or states in SCCs without rejecting states,
we do not really need counters: we can assume that the counter corresponding
to such a state is always reset to 0. We call those states in A transient that can
only be visited once on every run of the automaton. Thus, only one bit is needed
for such states instead of plog2(b+ 1)q+ 1 bits. This modification does not alter
the soundness or completeness of the overall synthesis procedure. Additionally,
as some counters are now reset on some transitions, in practice we often have
the situation that for realisable specifications, the number of counter bits per
remaining state necessary for finding out that the specification is realisable is
also less.

4.2 The Safety Part

For the encoding of the game components corresponding to safety assumptions
and guarantees, we state two different, straight-forward methods, which we ex-
plain in the following. The first method only works for locally checkable properties
and is usually more efficient than the second one in this case, whereas the latter
method is capable of handling arbitrary safety properties.

Smart encoding of locally checkable properties: If an LTL property is
of the form ψ = G(φ) with a formula φ in which the only temporal operator
occurring is X, then ψ is a locally checkable property [12]. Let k be the deepest
nesting of the X operator in φ. For checking the satisfaction of such a property
along a trace, it suffices to store whether the property has already been violated,
the last k input/outputs (also called history) and the current round number
(with the domain {0, 1, . . . , k − 1,≥ k}). Then, in every round with a number
≥ k, we update whether the specification is already falsified with the input and
output in the last k rounds and the current round. For encoding the round
number in a symbolic way, we use a binary representation.

Encoding such a property in this way has some advantages: First of all,
the encoding proposed is canonical. Furthermore, multiple properties can share
the information stored in the game state space this way, so we can recycle the
stored information for all such locally checkable safety properties. Note that it
is possible to reduce the number of bits necessary for storage by leaving out the
history bits not needed for checking the given properties.

The general method: Safety properties have equivalent syntactically safe
UCW, i.e., in the UCW, all rejecting states are absorbing. In this case, the
UCW can be determinised by the power set construction. Thus, we can assign
to each state in the universal automaton a state bit which is set to 1 whenever



there is a run from the initial state to the respective state encoded by the bit
for the input/output played by the players during the game so far.

This method is applicable to all safety properties but requires the computa-
tion of a universal co-Büchi automaton having the property stated above. While
it has been observed that checking if a property is safety is not harder than
building an equivalent universal co-Büchi automaton [13], it is not guaranteed
that typical procedures for constructing UCWs from LTL properties yield au-
tomata that have this property. For conciseness, we use a simplified approach
in our actual implementation. If the procedure employed for converting an LTL
formula into a UCW yields a UCW for which all rejecting states are absorbing
or transient, we declare the property as being safety and otherwise treat it as a
non-safety property. While we may miss safety properties this way, the soundness
of the overall approach is preserved.

5 Checking Unrealisability

So far, we have only dealt with the case that we want to prove realisability of
a specification. If a specification is unrealisable, then for no bound b ∈ IN, the
safety game induced by the bound and the specification is won for the system
player. Thus, an implementation of our approach, which would typically increase
the bound successively until the induced safety game is winning for the system
player, does not terminate in this case. In [8], it is described how the bounded
synthesis approach can be used for detecting unrealisability quickly anyway: we
simply run the synthesis procedure both on the original specification as well as
on the negated specification with swapped input and output in parallel. One of
these runs is guaranteed to terminate. Whenever this happens, we can abort the
other run. This results in an decision procedure for the overall problem.

When applying the optimisations from this paper, this idea is not directly
usable, as when negating the specification, the result is not again of the form∧
a∈A a →

∧
g∈G g for some sets of assumptions A and guarantees G. Instead,

checking if the environment player wins can be done by swapping input and
output, negating only the modified specification, and making the final states
of G1 losing for player 1 instead of winning. Then, player 1 (which is now the
environment player) wins only if the safety assumptions are fulfilled, the safeg
bit always represents if a safety guarantee has already been violated, and the
negated modified specification is fulfilled (with respect to the given bound).

Using the notations from Section 3, after replacing G3 with a game cor-
responding to the negated modified specification, we can compute the set of
winning states for the environment player by:

W = νX.X ∧ (¬BF1 ) ∧ (∃in.∀out .∃post .Bδ ∧X[post/pre] ∧ (¬BF2 ) ∧ (¬BF3 ))

6 Experimental Results

We implemented our symbolic bounded synthesis approach in C++ with the
BDD library CUDD v.2.4.2 [21], using dynamic variable reordering. The pro-



totype tool assumes that the individual guarantees and assumptions are given
separately. The first step in the computation is to split non-safety properties from
safety ones. For this, the tool calls the LTL-to-Büchi converter LTL2BA v.1.1 [9]
on the negations of the properties to obtain equivalent universal co-Büchi word
automata. As described in Section 4.2, we then check if the automata obtained
are syntactically safe. Locally checkable properties are converted to games using
the procedure specialised in this case, all other safety properties are treated by
the general procedure given. The UCW corresponding to the modified non-safety
part of the specification (as described in Section 3) is again computed by calling
LTL2BA on it. The last step for realisability checking is to solve the composite
games built for a successively increasing number of counter bits per state in the
UCW until the game is winning for the system player. We always start with two
bits.

We always check for realisability and unrealisabilty of the given specification
simultaneously, as described in the previous section. In case of realisability, we
extract an implementation that fulfills the specification. We do this in a fully
symbolic way: the first step is to compute the winning region of the game and
identify state bits that have a fixed value throughout all winning plays. These
state bits are removed. Then, we restrict the transition relation to moves by
the system player for which the lexicographically minimal next winning state is
chosen (for some order of the state bits). We do the same for the output bits, i.e.,
for some order of the output bits, we restrict the resulting transition relation to
lexicographically minimal output bit valuations (with respect to the remaining
choices for the system player). As a result, the transition relation is weakened in
a way such that there is precisely one combination of next state and output bit
valuation left for every reachable state and input variable assignment, making
the behaviour of player 1 deterministic. The remaining game graph is, together
with the specification, converted to a NuSMV [6] model. This allows running
NuSMV to verify the correctness of the models produced.

All computation times given in the following are obtained on a Sun XFire
computer with 2.6 Ghz AMD Opteron processors running an x64-version of Li-
nux. All tools considered are single-threaded. We restricted the memory usage to
2 GB and set a timeout of 3600 seconds. The running times for our tool always
include the computation times of LTL2BA.

6.1 Performance Comparison on the Examples from [11, 8]

We compare our prototype implementation with the only other currently publicly
available tools for full LTL synthesis, namely Lily v.1.0.2 [11] and Acacia v.0.3.9
[8]. In the following, for Acacia as well as our prototype tool, we only give
running times for the non-realisability check if the property is not realisable and
the realisability check and model synthesis if the property is realisable.

The 23 mutex variations used as examples in [11, 8] are a natural starting
point for our investigation. For usage with our tool, we adapted these examples
to the Mealy-type computation model used in this work (as described in Section
2.1) by prefixing all references to input variables with a next-time operator. For



Table 1. Comparison of the running times of Acacia and our prototype tool (in se-
conds) on the scalable example no. 3 from [8]. In this table, we denote timeouts by
“t/o” and running out of memory by “m/o”. As Lily performs worse than Acacia on
this benchmark, we did not include Lily in this comparison.

# of Clients: 1 2 3 4 5 6 7 10 14 15 20 21 22

Acacia running times: 0.9 2.0 4.0 9.8 47.3 506.5 m/o m/o m/o m/o m/o m/o m/o

Prototype running times: 0.3 0.7 0.6 1.9 0.9 4.6 3.0 651.5 491.0 t/o 1909.0 t/o t/o

these 23 examples, Lily needed 54.35 seconds of computation time (of which 44.25
seconds were devoted to computing the automata from the given specifications).
Acacia in turn finished the task in 53.71 seconds (including 42.2 seconds for
building the automata). Our prototype implementation had a total running time
of about 19.41 seconds. As computing the automata from the specification parts
is not a pure preprocessing step in our prototype, we do not split up the total
running time here.

In [8], the authors also modify one of these examples in order to be scalable.
Table 1 contains the respective results for this example.

6.2 A Load Balancing System

For evaluating the techniques presented in this paper in a more practical context,
we present an example concerning a load balancing unit distributing requests to
a fixed number of servers. Such a unit typically occurs as a component of a bigger
system which in turn utilises it for scheduling internal requests. We demonstrate
how a synthesis procedure can be used in the early development process of the
bigger system in order to systematically engineer the requirements of the load
balancer. Using a synthesis tool in this context makes it possible detect errors in
the specification that result in unrealisability as early as possible. We start by
stating the fundamental properties of the load balancing system and finally tune
it towards serving requests to the first server in a prioritised way. After each
added specification/assumption, we run our example implementation in order to
check if the specification is still realisable.

The following list contains the parts of the specification. Table 2 gives the
running times of our tool and Acacia for the respective sets of assumptions
and guarantees and some numbers of clients n ∈ {2, . . . , 9}. The system to be
synthesized uses the input bits r0, . . . , rn−1 for receiving the information whether
some server is sufficiently under-utilised to accommodate another task and the
output bits g0, . . . , gn−1 for the task assignments. An additional input job reports
on an incoming job to be assigned. For usage with Acacia, all occurrences of
output variables in the specification have been prefixed with a next-time operator
to take into account the different underlying computation model.

1. Guarantee: Non-ready servers are never bothered:
∧

0≤i<nG(gi → ri)
2. Guarantee: A task is only assigned to one server:

∧
0≤i<nG(gi →

(
∧
j∈{1,...,n}\{i} ¬gj))



3. Guarantee: Every server is used infinitely often:
∧

0≤i<nGF (gi)

Note that the guarantees 1,2 and 3 cannot be fulfilled at the same time as some
server might not report when it is ready. Therefore, we replace the third part of
the specification and continue:

4. Guarantee: Liveness of the system:
∧

0≤i<nGF (ri)→ GF (gi)
5. Guarantee: Only jobs that actually exist are assigned:
G((

∨
0≤i<n gi)→ job).

Again, the guarantees 1, 2, 4 and 5 are unrealisable in conjunction as the job
signal might never be given. We add the assumption that this is not the case:

6. Assumption: There are always incoming jobs: GF job

At this point, the system designer gets to know that this added requirement does
not fix the unrealisability problem, either. The reason is that the clock cycles in
which job is set and the cycles in which some server is ready might occur in an
interleaved way. We therefore add:

7. Assumption: The job signal stays set until the job has been assigned: G(job∧
(
∧

0≤i<n ¬gi)→ X(job))

Note that the specification is still not realisable. The reason is that the ready
signal of one server i might always be given after a job assignment to another
server j has been given (for some i 6= j). If server i then always immediately
withdraws its ready signal, the controller can never schedule a job to server i,
contradicting guarantee 4 if both servers i and j are ready infinitely often. We
therefore modify guarantee 4 to not consider these cases:

8. Guarantee: Every ready signal is either withdrawn or eventually handled:∧
0≤i<n ¬(FG(ri ∧ ¬gi))

We continue by adding a priority to the first server. Note that this breaks re-
alisability again, as server 0 can block the others. As an example, we solve this
problem by adding the assumption that server 0 works sufficiently long after it
obtains a new job before signalling ready again.

9. Guarantee: Server 0 gets a job whenever a job is given and it is ready:
G((

∨
1≤i<n gi)→ ¬r0)

10. Assertion: Server 0 does not report being ready when it gets a task until
after an incoming job has been reported on for the next time: G(g0 →
((¬job ∧ ¬r0) U (job ∧ ¬r0))).

7 Conclusion & Outlook

In this paper, we described the steps necessary to make the bounded synthesis
approach work well with symbolic data structures such as BDDs. The key re-
quirement was to reduce the number of counters in the safety games that occur



Table 2. Running times of Acacia (“A”) and our prototype tool (“P”) for the sub-
problems defined in Section 6.2 for n ∈ {2, . . . , 9}. For each combination of assumptions
and guarantees, it is reported whether the specification was satisfiable (+/-), how many
counter bits per state in the UCW were involved at the end of the computation (only
for our prototype tool) and how long the computation took (in seconds). We left out
the Lily tool as it is not competitive on the load balancing example.

Tool Specification / # Clients 2 3 4 5 6 7 8 9

P
1

+ 2 0.6 + 2 0.6 + 2 0.2 + 2 1.3 + 2 0.2 + 2 0.3 + 2 0.2 + 2 0.3
A + 0.3 + 0.4 + 0.6 + 0.9 + 1.5 + 2.7 + 5.3 + 12.1

P
1 ∧ 2

+ 2 0.4 + 2 0.3 + 2 0.6 + 2 0.6 + 2 0.7 + 2 0.6 + 2 0.6 + 2 0.7
A + 0.3 + 0.3 + 0.4 + 0.4 + 0.6 + 0.9 + 1.6 + 3.1

P
1 ∧ 2 ∧ 3

- 2 0.5 - 2 0.5 - 2 0.5 - 2 0.5 - 2 0.7 - 2 1.0 - 2 6.9 - 2 73.9
A - 19.2 - 475.6 timeout timeout timeout timeout timeout timeout

P
1 ∧ 2 ∧ 4

+ 2 0.3 + 3 0.4 + 3 0.9 + 4 65.5 + 4 104.6 + 4 990.3 timeout timeout
A + 0.6 + 1.3 + 8.7 + 277.9 timeout timeout timeout timeout

P
1 ∧ 2 ∧ 4 ∧ 5

- 2 0.2 - 2 0.7 timeout timeout timeout timeout timeout timeout
A - 163.4 timeout timeout timeout timeout timeout timeout timeout

P
6 → 1 ∧ 2 ∧ 4 ∧ 5

- 2 0.2 - 2 0.7 - 2 3244.1 timeout timeout timeout timeout timeout
A - 175.3 timeout timeout timeout timeout timeout timeout timeout

P
6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5

- 2 0.5 - 2 1.1 timeout timeout timeout timeout timeout timeout
A - 190.7 timeout timeout timeout timeout timeout timeout timeout

P
6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8

+ 2 0.3 + 3 0.6 + 3 2.4 + 4 20.7 + 4 368.6 timeout timeout timeout
A + 7.5 + 69.0 + 357.4 timeout timeout timeout timeout timeout

P
6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

- 2 0.3 - 2 0.2 - 2 0.3 - 2 1.0 - 2 16.8 - 2 449.1 timeout timeout
A - 48.8 - 2133.5 timeout timeout timeout timeout timeout timeout

P
6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

+ 2 0.4 + 2 0.8 + 3 118.7 timeout timeout timeout timeout timeout
A + 26.9 + 295.8 timeout timeout timeout timeout timeout timeout

in this approach as much as possible. We performed this task by splitting the
specification into safety and non-safety parts and presented an additional trick
that allowed stripping some counters from the game component corresponding
to the non-safety specification conjuncts. We also discussed efficient encodings
of the safety part of the specification into games. Experimental results show a
huge speed-up compared to previous works.

One particular issue we did not address in this paper is the extraction of
small implementations in the synthesis process for the case that the specifica-
tion is realisable. Similarly to the observations made in the context of generalised
reactivity(1) synthesis, where the expressivity of full LTL is traded against the
possibility to use more efficient algorithms for performing the synthesis process,
the models produced are often non-optimal [2], i.e., unnecessarily large. Thus,
further work will deal with the more effective extraction of winning strategies.
While the techniques presented here are already suitable for requirements en-
gineering and prototype extraction, the problem of how to obtain small imple-
mentations which can directly be converted to suitable hardware circuits is still
open.
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A Notes on the terminology in this paper

Liveness and safety properties: In this paper, we use the term non-safety
property rather than liveness property. This is to avoid confusion as the latter is
often considered to be equivalent with the term pure liveness properties. Our non-
safety properties can however have impact on the finitary behaviour of a system
under consideration. Consider for example the property ψ = G(a U b) ∨G(a↔
¬b) over a set of variables {a, b}. While ψ is not a safety property, it does not
allow extending the prefix word {}{a, b}{a, b} . . . in a way that it satisfies ψ.

As many readers directly skip to sections of their interest and might thus
miss notes on the usage of terms (especially in the preliminaries), we preferred
not to use the term “liveness properties” in our work, even though “non-safety”
sounds less catchy.

Extracting small strategies: In this paper, we focussed on obtaining results
from the synthesis process as fast as possible. Consequently, the strategies ex-
tracted are not necessarily minimal in size. Indeed, as the problem of obtaining
minimal strategies is even NP-complete for the one-player case1, for the usage
cases considered in this paper (feasibility check and prototype extraction), spend-
ing too much time on obtaining small results seems to be overkill. Consequently,
as also observed in [2] in the context of generalised reactivity synthesis, the re-
sulting strategies are often much larger than necessary. We leave the problem of
finding suitable heuristics for strategy reduction open.

B Notes on the experimental evaluation:

The impact of the LTL-to-Büchi tool on our experimental evaluation:
The tools “Lily” and “Acacia” we compare against in our experimental evalua-
tion both use “Wring” as the tool to convert LTL formulas into non-deterministic
Büchi automata (or dually, into universal co-Büchi automata). Wring produces
Büchi automata in which the states are labelled with the input/output in the
last round of the run rather than the edges. This disallowed us from using Wring
as the LTL-to-Büchi tool for our synthesis tool as well: the optimisations pre-
sented in this paper are geared towards reducing the state space representation
of the synthesis game as much as possible. Introducing the last input/output as
needed in such a case into the state space would contradict this idea; thus, we
use a tool for creating Büchi automata in which the edges are labelled with the
last input/output.

1 Obtaining a minimal positional strategy in a safety game has been proven to be
NP-hard (see: Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar: The Com-
plexity of Coverage. APLAS 2008: 91-106). The fact that obtaining a Mealy automa-
ton with a minimal number of states is NP-hard can be derived from this result. It
actually even holds if we restrict the input/output width to just one bit. This is a
yet unpublished result by us.



Automatic variable ordering: As already mentioned, we used automatic
BDD variable-reordering in our implementation. For fairness of the compari-
son, we did not use a hand-crafted initial order. We only changed three of the
parameters of the CUDD BDD library:

– Maximum BDD growth during sifting a variable was restricted to 10% (in-
stead of the default value: 20%). This way, less automatic reordering is per-
formed.

– The CUDD variable DD MAX CACHE TO SLOTS RATIO is set to 16.
This allocates more of the available memory to the cache, reducing the
amount of re-computation of previous results.

– The maximum memory usage by the CUDD library was set to 3.5GB (instead
of the default, 128MB). Although this is beyond the memory restriction
we imposed when running the synthesis tools (namely, 2GB), we observed
that due to intensive automatic reordering, the timeout of 3600 seconds was
always reached before the memory was exceeded. Thus, our prototype tool
never ran out of memory in our experimental evaluation.

Complete results for the load balancing example: Due to space restric-
tions, we could not give benchmarking results for the load balancing example
for all tools considered in the paper. For completeness, they are given here in
the appendix.

Table 3 shows the complete results for our prototype tool, Table 4 does the
same for the Acacia tool. Finally, 5 contains running times for the tool Lily.

Table 3. Complete results (running times) of our prototype tool on the load balancing
benchmark.

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 2 0.6 + 2 0.6 + 2 0.2 + 2 1.3 + 2 0.2 + 2 0.3 + 2 0.2 + 2 0.3

1 ∧ 2 + 2 0.4 + 2 0.3 + 2 0.6 + 2 0.6 + 2 0.7 + 2 0.6 + 2 0.6 + 2 0.7

1 ∧ 2 ∧ 3 - 2 0.5 - 2 0.5 - 2 0.5 - 2 0.5 - 2 0.7 - 2 1.0 - 2 6.9 - 2 73.9

1 ∧ 2 ∧ 4 + 2 0.3 + 3 0.4 + 3 0.9 + 4 65.5 + 4 104.6 + 4 990.3 timeout timeout

1 ∧ 2 ∧ 4 ∧ 5 - 2 0.2 - 2 0.7 timeout timeout timeout timeout timeout timeout

6 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.2 - 2 0.7 - 2 3244.1 timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.5 - 2 1.1 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 0.6 + 3 2.4 + 4 20.7 + 4 368.6 timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.3 - 2 0.2 - 2 0.3 - 2 1.0 - 2 16.8 - 2 449.1 timeout timeout

6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.4 + 2 0.8 + 3 118.7 timeout timeout timeout timeout timeout

The version of the Acacia tool used in the paper: For obtaining the
benchmarks, we used the version “Acacia’10” downloaded on the 5th on January
2010 from its homepage. In order to be comparable to [8], we did not use the
new realisability checking methods provided, but rather used the default method
“0” offered by the tool.

As far as the example specifications other than the load balancing example
used in the experimental evaluation section are concerned, we have taken them



Table 4. Complete results (running times) of the Acacia tool on the load balancing
benchmark.

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 0.3 + 0.4 + 0.6 + 0.9 + 1.5 + 2.7 + 5.3 + 12.1

1 ∧ 2 + 0.3 + 0.3 + 0.4 + 0.4 + 0.6 + 0.9 + 1.6 + 3.1

1 ∧ 2 ∧ 3 - 19.2 - 475.6 timeout timeout timeout timeout timeout timeout

1 ∧ 2 ∧ 4 + 0.6 + 1.3 + 8.7 + 277.9 timeout timeout timeout timeout

1 ∧ 2 ∧ 4 ∧ 5 - 163.4 timeout timeout timeout timeout timeout timeout timeout

6 → 1 ∧ 2 ∧ 4 ∧ 5 - 175.3 timeout timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5 - 190.7 timeout timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 + 7.5 + 69.0 + 357.4 timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 48.8 - 2133.5 timeout timeout timeout timeout timeout timeout

6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 26.9 + 295.8 timeout timeout timeout timeout timeout timeout

Table 5. Complete results (running times) of the Lily tool on the load balancing
benchmark.

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 0.3 + 0.7 + 5.2 + 93.9 + 2296.6 timeout timeout timeout

1 + 2 + 0.2 + 0.5 + 4.0 + 84.3 + 2542.6 timeout timeout timeout

1 + 2 + 3 - 0.4 - 1.8 - 19.4 - 294.8 timeout timeout timeout timeout

1 + 2 + 4 + 5.5 timeout timeout timeout timeout timeout timeout timeout

1 + 2 + 4 + 5 timeout timeout timeout timeout timeout timeout timeout timeout

6 → 1 + 2 + 4 + 5 timeout timeout timeout timeout timeout timeout timeout timeout

6 + 7 → 1 + 2 + 4 + 5 timeout timeout timeout timeout timeout timeout timeout timeout

6 + 7 → 1 + 2 + 5 + 8 timeout timeout timeout timeout timeout timeout timeout timeout

6 + 7 → 1 + 2 + 5 + 8 + 9 timeout timeout timeout timeout timeout timeout timeout timeout

6 + 7 + 10 → 1 + 2 + 5 + 8 + 9 timeout timeout timeout timeout timeout timeout timeout timeout

from the download archive of the ’09-version of the Acacia tool as some of them
are no longer contained in the Acacia’10 download archive.

Complete results for demo-v3: For completeness, we also give a full table
for the running times of Acacia and our prototype tool on the scalable version
of demo no. 3 from [8]. As it has been shown in [8] that Acacia clearly out-
performs Lily here, we left out Lily from the comparison. The results for 1–33
clients are given in Table 6. For this evaluation, we set the timeout to 2 hours.
The maximum allowed memory consumption was still set to 2GB. It can be
observed that the running times of our prototype tool do not strictly increase
with the number of clients. A similar behaviour was also observed in [2] in the
context of generalized reactivity synthesis. We conjecture that this effect might
be a consequence of using a dynamic BDD variable reordering heuristic. Since it
heuristically chooses variables to sift, a small change in the BDD can have large
effects on the ordering and thus also on the computation time.

The examples 22.1 to 22.6 from [8]: In [8], the authors give some additional
examples (named 22.1 to 22.6). For conciseness of the presentation, we did use
them for the first part of the experimental evaluation.

However, we did try our implementation on them and the accumulated run-
ning time was 4.4 seconds. Acacia needed 61.36 seconds in total for them to
finish. Lily in turn needed 34.05 seconds for all of them.



Table 6. The complete results for demo-v3 for our approach and Acacia. All running
times are given in seconds.

# Cl.
Running times

# Cl.
Running times

# Cl.
Running times

Acacia Our ap. Acacia Our ap. Acacia Our ap.

1 0.9 0.3 2 2.0 0.7 3 4.0 0.6

4 9.8 1.9 5 47.3 0.9 6 506.5 4.6

7 memout 3.0 8 timeout 15.3 9 memout 6.9

10 memout 651.5 11 memout 754.5 12 memout 160.9

13 memout 54.8 14 memout 491.0 15 memout 3852.2

16 timeout 3290.2 17 memout 513.4 18 memout 3352.4

19 memout 6881.6 20 memout 1909.0 21 memout timeout

22 memout timeout 23 memout timeout 24 memout timeout

25 memout timeout 26 memout 3828.0 27 memout timeout

28 memout timeout 29 memout timeout 30 memout timeout

31 memout timeout 32 memout timeout 33 memout timeout

Checking correctness of the models produced: As written in the main
part of the paper, our implementation produced NuSMV models for the cases in
which the specification is realisable. These were in turn usable for verifying the
result of the synthesis process. We did this for the following cases:

– The 19 realisable specifications from the 23 basic benchmarks used in [8].
– The 5 realisable specifications from the modification of specification 22 given

in [8].
– The scalable version of specification 3 given in [8] for the numbers of clients
{1, 2, 3}.

– The models of the first two rows and the left-most column in the benchmark
table for the load balancing example.

Due to the non-minimality of the obtained strategies, in other cases, the models
were too large to be verified by NuSMV (NuSMV crashed or did not finish within
a couple of hours). We never observed NuSMV to falsify a model.

Switching off features: For completeness, we also give benchmark results for
our prototype tool and the load balancing benchmark with the optimisations
from Section 3 and Section 4 switched off. Table 7 contains the results with
specification splitting turned off, but non-safety counter reduction switched on.
Table 8 contains the results of switching the non-safety counter reduction off, but
keeping the specification splitting turned on. Finally, for Table 9, both features
are switched off.



Table 7. Benchmark results for our prototype tool and the load balancing benchmark
with specification splitting turned off and non-safety counter reduction switched on

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 2 0.1 + 2 0.1 + 2 0.2 + 2 0.2 + 2 0.3 + 2 0.7 + 2 2.6 + 2 8.9

1 ∧ 2 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1

1 ∧ 2 ∧ 3 - 2 0.1 - 2 0.1 - 2 0.2 - 2 3.9 timeout timeout timeout timeout

1 ∧ 2 ∧ 4 + 2 0.2 + 3 0.3 + 3 0.7 + 4 5.8 + 4 55.5 timeout timeout timeout

1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.3 - 2 63.8 timeout timeout timeout timeout timeout

6 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.8 - 2 23.1 timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 0.7 - 2 165.1 timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 3.7 + 3 1299.3 timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.1 - 2 0.2 - 2 3.2 timeout timeout timeout timeout timeout

6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.3 + 2 7.6 timeout timeout timeout timeout timeout timeout

Table 8. Benchmark results for our prototype tool and the load balancing benchmark
with specification splitting turned on and non-safety counter reduction switched off

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 2 0.3 + 2 0.1 + 2 0.2 + 2 0.2 + 2 0.3 + 2 0.2 + 2 0.4 + 2 0.2

1 ∧ 2 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.2 + 2 0.1 + 2 0.2 + 2 0.1 + 2 0.2

1 ∧ 2 ∧ 3 - 2 0.2 - 2 0.2 - 2 0.2 - 2 0.2 - 2 0.3 - 2 1.0 - 2 7.0 - 2 73.4

1 ∧ 2 ∧ 4 + 2 0.2 + 3 2.7 + 3 67.6 timeout timeout timeout timeout timeout

1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 8.3 timeout timeout timeout timeout timeout timeout

6 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.3 - 2 207.9 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.3 - 2 485.6 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.3 + 3 0.5 + 3 1.3 + 4 339.1 + 4 3596.8 timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.2 - 2 0.2 - 2 0.3 - 2 1.1 - 2 16.8 - 2 448.7 timeout timeout

6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.4 + 2 1.7 + 3 1051.5 timeout timeout timeout timeout timeout

Table 9. Benchmark results for our prototype tool and the load balancing benchmark
with specification splitting turned off and non-safety counter reduction switched off

Setting / # Clients 2 3 4 5 6 7 8 9

1 + 2 0.1 + 2 0.2 + 2 0.1 + 2 0.2 + 2 0.3 + 2 0.7 + 2 2.7 + 2 8.2

1 ∧ 2 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.1 + 2 0.2

1 ∧ 2 ∧ 3 - 2 0.1 - 2 0.1 - 2 0.2 - 2 3.9 timeout timeout timeout timeout

1 ∧ 2 ∧ 4 + 2 0.3 + 3 2.6 + 3 91.1 timeout timeout timeout timeout timeout

1 ∧ 2 ∧ 4 ∧ 5 - 2 0.1 - 2 1.2 - 2 508.3 timeout timeout timeout timeout timeout

6 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.5 - 2 687.7 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 4 ∧ 5 - 2 0.7 - 2 817.9 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 + 2 0.4 + 3 320.7 timeout timeout timeout timeout timeout timeout

6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 - 2 0.1 - 2 0.2 - 2 3.2 timeout timeout timeout timeout timeout

6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9 + 2 0.6 + 2 11.7 timeout timeout timeout timeout timeout timeout


