
Slugs: Extensible GR(1) Synthesis

Rüdiger Ehlers1 and Vasumathi Raman2

1 University of Bremen and DFKI GmbH, Germany
2 United Technologies Research Center, United States of America

Abstract. Applying reactive synthesis in practice often requires modi-
fications of the synthesis algorithm in order to obtain useful implemen-
tations. We present slugs, a generalized reactivity(1) synthesis tool that
has a powerful plugin architecture for modifying any aspect of the synthe-
sis process to fit the application. Slugs comes pre-equipped with a vari-
ety of plugins that improve the quality of the synthesized solutions along
criteria such as quick response, cost-optimality, and error-resilience. We
demonstrate the utility and scalability of the tool on an example from
robotics.

1 Introduction

Reactive synthesis automates the task of developing correct-by-construction finite-
state machines: rather than writing an implementation and a specification for
verifying the system, the engineer need only devise the specification, and the
implementation is computed automatically. Of the many synthesis approaches
available to the practitioner, generalized reactivity(1) synthesis [1], which is com-
monly abbreviated as GR(1) synthesis, has found widespread use for applications
in robotics and control. Reasons for this success include its comparatively low,
singly-exponential time complexity, and its amenability to symbolic computation
using binary decision diagrams (BDDs).

The basic idea behind reactive synthesis is to capture all of the require-
ments of the desired implementation in the specification, and to then accept any
implementation that satisfies the requirements. On a theoretical level, this is
a compelling premise: if the obtained implementation is not good enough, the
engineer can simply add additional requirements until it is. However, on a prac-
tical level, this approach is problematic: in many cases, system properties such
as “quick response” or “few states” cannot be captured precisely in the specifi-
cation without resorting to synthesis with a cost or payoff function. Introducing
costs leads to a higher computational complexity, loss of ability to efficiently use
BDDs as a computational data structure, and unfavourable theoretical proper-
ties, such as suboptimality of finite memory solutions. Having several optimiza-
tion criteria in the specification can also create undecidable synthesis problems.
Finally, some optimization criteria cannot be expressed quantitatively. Examples
include minimizing the time spent waiting for environment fairness conditions
(i.e. environment actions that can be assumed to be performed infinitely often)

to hold, and cooperation with the environment on preserving the environment
assumptions.

All these arguments advocate for a different approach to practical reactive
synthesis: rather than encoding every qualitative requirement for the synthesized
controller into the specification, why not adapt the synthesis algorithm itself to
compute implementations that have the properties needed for practical applica-
tions? The simplicity of generalized reactivity(1) synthesis makes it particularly
suitable as a starting point for demonstrating this approach to synthesis. Modifi-
cations of the standard GR(1) algorithm for synthesizing eager and cost-optimal
implementations [2] or cooperative implementations [3] that still support sym-
bolic computation have already been proposed in the past, along with semantic
modifications for robotics applications [4] and techniques for debugging support
[5].

The presented tool slugs offers a framework for GR(1) synthesis and its
modifications. It has a small simple core implementation of the GR(1) synthe-
sis algorithm that can be extended by user-written plugins. The architecture
of slugs allows one to use multiple plugins at the same time, where each plu-
gin only modifies a part of the synthesis process. A focus of the tool lies on
conciseness and readability of the code, to make it easier for algorithms to be
adapted for specific application domains. For example the realizability check on
a specification, which amounts to evaluating the main fixpoint formula from [1],
takes only 23 lines of code, and yet is very readable. The slugs synthesis tool
comes with a specification debugger, using which the cause for realizability and
unrealizability of a specification can be determined in an interactive fashion. The
tool is written in C++ and is available under the permissive MIT open source
license.

This paper is structured as follows: in the next section, we describe the
particular view of GR(1) synthesis that slugs takes. Section 3 then provides
an overview of slugs’s architecture and the available plugins. Finally, Section 4
demonstrates slugs’s performance on an example specification.

2 GR(1) Synthesis

Synthesis of reactive systems has been identified to have a high computational
complexity for many specification logics. For generalized reactivity(1) specifica-
tions, the synthesis problem has a complexity that is only exponential in the
number of atomic propositions in the specification (or polynomial in the size of
the the state space of the game structure built in the synthesis process). Given
sets of input positions I and O, specifications in this fragment of linear temporal
logic (LTL) are of the form

(ϕa
i ∧ ϕa

s ∧ ϕa
l)→ (ϕg

i ∧ ϕ
g
s ∧ ϕ

g
l),

where ϕa
i , ϕa

s , and ϕa
l are called the assumptions, and ϕg

i , ϕg
s , and ϕg

l are called
the guarantees of the specification. The assumptions are used to state what we
know about the behavior of the environment in which the synthesized system

is intended to operate, whereas the guarantees contain the properties that the
synthesized system needs to satisfy if the environment behaves as expected. In
GR(1) specifications, all assumptions and guarantees must have a certain shape.
The initialization assumptions ϕa

i and ϕg
i must be free of temporal operators

and state valid variable valuations for I and O when the synthesized controller
starts to operate. The safety properties ϕa

s and ϕg
s state how the proposition

valuations for I and O can evolve during a step of the synthesized controller’s
execution. The liveness properties ϕa

l and ϕg
l state which transitions of (I ∪O)’s

valuations are supposed to happen infinitely often.
Synthesis from generalized reactivity(1) specifications is often reduced to

solving a fixpoint equation on a game structure that is built from the specifica-
tion. The transitions in the game structure are given by the safety assumptions
and guarantees, and the liveness properties are translated to environment and
system goals, which the system and environment player try to satisfy infinitely
often in a play of the game, respectively. In contrast to [1], we use a modified
fixpoint equation with only a single occurrence of the enforceable predecessor
operator EnfPre to compute from which positions the system player can win the
game:

W = νZ.

n∧
j=1

µY.

m∨
i=1

νX.EnfPre((ϕg
l,j ∧ Z

′) ∨ Y ′ ∨ (¬ϕa
l,i ∧X ′))

Here, ν is the greatest fixpoint operator whereas µ is the least fixpoint operator,
while the number of liveness assumptions and guarantees are m and n, respec-
tively. The EnfPre operator takes as input a set of transitions (the corresponding
operator in [1] takes a set of states), and computes the set of positions of the
game from which the system player can ensure that, after the next valuations
to I and O have been selected by the environment and system players, respec-
tively, the resulting transition is in the set of given transitions. The specification
formula only explicitly mentions the liveness assumptions and guarantees of the
specification, as the safety constraints are encoded in the game structure, and
the initialization constraints only need to be considered after computing the set
of winning positions in the game, W . If for every first environment player move,
the system player can ensure that the resulting position satisfies ϕa

i → ϕg
i and

is in W , then there exists an implementation for the specification, and it can
be extracted from the sequence of transitions given to EnfPre during the evalua-
tion of the least fixpoint, after all the greatest fixpoint operators have been fully
evaluated.

The modified fixpoint formula makes it easier to alter the synthesis algo-
rithm, as it channels the possible actions of the implementation to be synthesized
through a single invocation of the EnfPre operator. Restricting or extending this
set of actions thus amounts to simply adding or removing transitions from the
operand of EnfPre. Also, the modified fixpoint formula makes the aims of the
system player more explicit: in every step of the system’s execution, the system
should either reach a system goal (which need to be reached infinitely often for
the liveness guarantees to hold), get closer to the system goal, or wait for some

environment goal to be reached: this last option is only available until the cur-
rent environment goal has been reached. Except in very simple specifications, it
is commonly not under the control of the system which of these cases holds. The
system must, however, ensure that at least one of them holds at every point in
time. The conjunctions and disjunctions over i and j make sure that all liveness
assumptions and guarantees are considered in order.

The presented tool slugs does not build the game structure explicitly, but
rather uses binary decision diagrams (BDDs) as symbolic data structure. As
the synthesis games have all valuations of I ∪ O as positions, position sets and
transitions relations can be represented efficiently as BDDs with |I|+|O|many or
twice as many variables (one for each ‘end’ of a transition). All BDD operations
are performed by the CUDD library [6].

3 Modifying GR(1) Synthesis

Reactive synthesis has many applications, but most of them require the adapta-
tion of the synthesis approach in order to yield useful implementations and to
scale to problems of relevant size at the same time.

As one example, when performing automated high-level planning in robotics,
liveness assumptions are often used to model that doors in some workspace must
be open infinitely often. For a robot that needs to perform a certain task, this
allows the robot to wait for a door to open, for example if it has to pass through
the door in order to perform its task. Yet, high-level robot controllers are often
observed to wait needlessly for doors to open when alternative paths exist; this
is considered to decrease the quality of the controller, even if the specification is
satisfied. While lifting the specification to a weighted one could solve the prob-
lem, solving (synthesis) games symbolically with costs is substantially harder
and leads to unfavourable theoretical properties (e.g. optimal strategies require
infinitely many states for mean-payoff games with liveness objectives). As an
alternative, slugs contains a simple modification to the GR(1) fixpoint formula
that penalizes such “waiting”: the implementation in slugs takes just 7 lines of
C++ code.

As another example, in high-level robotics applications [7], the position of
a robot in a workspace is commonly under the control of the robot. Safety
guarantees constrain the motion of the robot such that it can only move to
adjacent regions of a workspace. However, the robot does not have control over
where in the workspace it is deployed. A synthesized controller should thus be
able to deal with any initial robot position. This makes the initial position
an input to the controller that is used exactly once, namely when the controller
starts. Integrating this additional input into the specification would lead to many
more variables in the BDDs during synthesis, which decreases performance. As
an alternative, we can confirm that all possible initial locations for the robot are
winning by testing for membership in W . This change in the synthesis process
needs a single line of code.

The slugs tool offers many plugins that implement other such modifica-
tions to the synthesis process. It was designed exactly with such modifications
in mind and is optimized towards being easily extensible. In particular, all core
parts of the synthesis process have been kept short and easily readable, to enable
modifying them with the least effort possible. Slugs uses C++ features such as
operator overloading to make all BDD operations concise and easily readable.
Furthermore, the input language of slugs is very simple to parse. This facili-
tates modifications of the synthesis process that are based on preprocessing the
specification. An additional script to translate from a richer input language to
slugs’ simpler language is also provided for convenience.

The slugs distribution can be obtained from https://github.com/Veri-

fiableRobotics/slugs and comes equipped with a few plugins that implement
techniques that can be found in the literature on GR(1) synthesis:

– The two plugins mentioned above (producing implementations that wait less
for the environment and system initialization robotics semantics).

– A plugin to compute implementations that cooperate with the environment
to satisfy the environment assumptions [3].

– A plugin to compute a counterstrategy from an unrealizable specification.
– Plugins to compute symbolic and explicit implementations, the former being

represented as BDDs.
– A plugin to compute estimators for incomplete information synthesis [8].
– A plugin that lets slugs execute a controller in an interactive way, such that

it can be used as a tool for simulating the controller called from other tools.
– Various plugins to compute specification reports, which help with debugging

formal specifications as in [5].
– A plugin that allows output variables to be divided into two classes, “fast”

and “slow”, and ensures that each transition in the solution is safe even if
the faster actions complete first [9].

– A plugin that computes implementations with recovery transitions, which
allow the system to continue operating after safety assumption failures that
can be compensated, similarly to the approach in [10].

– A plugin that computes the permissive implementations from [11].
– A plugin implementing the two-dimensional cost notion from [2].
– A plugin that computes a weakening of the assumptions in case of a realizable

specification such that the specification stays realizable under the weakening.

In addition, the slugs distribution comes with several Python scripts that aug-
ment its functionality:

– A script to modify a specification such that it encodes the error-resilient
synthesis problem for the original specification [12].

– A debugger to simulate implementations for realizable specifications and to
simulate a falsifying environment for unrealizable specifications.

– A compiler that converts specifications with integer variables and constraints
to purely boolean specifications.

– A specification report generator similar to the one described in [5].

Fig. 1. A robot workspace and two paths to reach the respective next goal. The naive
one is dotted, whereas the optimized one is not.

The slugs tool also allows to combine multiple plugins, provided that they have
been marked as being compatible.

4 Slugs in Action

We now describe a concrete application made possible by a slugs plugin.

Consider the synthesis problem for a high level robot controller in which
the robot operates on the workspace depicted in Figure 1. The workspace is
partitioned into regions, which all have different sizes. The position of the robot
is under its control, but it can only move to adjacent cells in each step. There
are four goals for the robot that each have to be visited infinitely often. For
two of the goal regions, we have additional input bits. Those regions do not
have to be reached if their respective input bit is false. The standard GR(1)
synthesis algorithm does not use the relative sizes of the regions, and therefore
the strategy that we synthesize in this setting is not optimal with respect to the
physical grounding of the scenario. The figure shows one relatively complex path
for getting from one gray region to another one that is part of the synthesized
strategy.

To ensure that the physically more efficient strategy is obtained, the synthe-
sis algorithm must be modified to incorporate worst-case costs on transitions
between rooms. For this example, we use the difference between region centers
as cost measure. Slugs comes with a plugin that implements GR(1) synthesis
with a cost function, similar to the modifications described in [2]. The alterna-
tive path is shown in Figure 1 as well. Note that the notion of optimality here is
somewhat specific to the application domain, as we always optimize the cost for

reaching the next goal of the robot, rather than using an optimization criterion
such as mean-payoff.

To solve the realizability problem of the scenario, slugs needs 0.03 seconds
on a i5 1.6GHz computer. Extracting an explicit-state implementation takes 0.1
seconds in addition (1015 states), and synthesizing the optimal strategy takes
another 14.9 seconds (resulting in 3315 states).

Acknowledgements

This work was supported by NSF ExCAPE and the Institutional Strategy of the
University of Bremen, funded by the German Excellence Initiative.

References

1. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3) (2012) 911–938

2. Jing, G., Ehlers, R., Kress-Gazit, H.: Shortcut through an evil door: Optimality
of correct-by-construction controllers in adversarial environments. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). (2013) 4796–
4802

3. Ehlers, R., Könighofer, R., Bloem, R.: Synthesizing cooperative reactive mission
plans. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). (2015) 3478–3485

4. Raman, V., Piterman, N., Finucane, C., Kress-Gazit, H.: Timing semantics for ab-
straction and execution of synthesized high-level robot control. IEEE Transactions
on Robotics 31(3) (2015) 591–604

5. Ehlers, R., Raman, V.: Low-effort specification debugging and analysis. In: 3rd
Workshop on Synthesis (SYNT). (2014) 117–133

6. Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0 (2015)
7. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-

sion and motion planning. IEEE Trans. Robotics 25(6) (2009) 1370–1381
8. Ehlers, R., Topcu, U.: Estimator-based reactive synthesis under incomplete infor-

mation. In: 18th International Conference on Hybrid Systems: Computation and
Control (HSCC). (2015) 249–258

9. Raman, V., Finucane, C., Kress-Gazit, H.: Temporal logic robot mission planning
for slow and fast actions. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (2012) 251–256

10. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Correct high-level robot behavior in
environments with unexpected events. In: Robotics: Science and Systems (RSS).
(2014)

11. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (2015) 4983–4990

12. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive
synthesis. In: 17th International Conference on Hybrid Systems: Computation and
Control (HSCC). (2014) 203–212

A Installing Slugs

The reactive synthesis tool slugs can be obtained by checking out a copy using
the version control system git. On systems with a git installation that is usable
from the command line interface, this can be done with the following command:

git clone https://github.com/VerifiableRobotics/slugs

While slugs uses the CUDD binary decision diagram library by Fabio Somenzi,
it is already included in the cloned folder. The slugs main executable can then
be compiled with the following commands:

cd slugs/src

make

The resulting executable will be put into the src directory. As a prerequisite,
the following items must be installed:

– a moderately modern default compiler (clang or gcc),
– The C++ library boost

The library must be installed in a way such that it can be used by the compiler
without setting additional paths. This is typically the case on Linux and MacOS
machines.

In order to use the Python scripts that come with slugs, Python 2.x with
x ≥ 6 must be installed. The interactive specification debugger furthermore
requires that the python-libcurses Python library is installed.

B Writing Slugs Specification

The synthesis tool slugs computes implementations from their specifications. A
specification is given as a text file in one of two formats:

– The very basic slugsin format, or
– The more simple to use structuredslugs format.

The latter format is a strict extension of the former. In both cases, the input
files are text files.

B.1 The basic input format

A slugsin file consists of multiple sections, which are started by section headers.
These are:

– [INPUT]: The lines after this section header denote the atomic input propo-
sitions.

– [OUTPUT]: The lines after this section header denote the atomic output
propositions.

– [ENV TRANS]: After this section header, the environment safety assumptions
are given.

– [SYS TRANS]: After this section header, the system safety guarantees are
given.

– [ENV INIT]: After this section header, the environment initialization as-
sumptions are given.

– [SYS INIT]: After this section header, the system initialization guarantees
are given.

– [ENV LIVENESS]: After this section header, the environment liveness as-
sumptions are given.

– [SYS LIVENESS]: After this section header, the system liveness guarantees
are given.

Any line in a slugsin file starting with a “#” symbol is a comment line
and is ignored by the tool. Empty lines are also ignored. Before the first section
header in an input file, there may only be empty or comment lines.

All non-comment and non-empty lines in the assumption and guarantee sec-
tions denote constraints. These are always given on individual lines. Con-
straints are given as Boolean formulas in Polish prefix notation, i.e., in which all
non-unary operators are assumed to be binary, and the operators are written be-
fore the operands. There is also always a space between operators and operands.
There is no next operator. If a constraint refers to the value of a variable at
the end of a transition, this is denoted by adding a ’ to the variable name. The
boolean operators available for specifying constraints are ! (not), | (or), & (and),
and ^ (exclusive or). Let us consider the following specification as an example:

[INPUT]

a

b

[OUTPUT]

x

y

[ENV_INIT]

& ! a ! b

[SYS_INIT]

& ! x ! y

[ENV_TRANS]

| a’ ! | x y

[SYS_TRANS]

| ! x’ ! y’

[SYS_LIVENESS]

& a y

In this specification, there are two input propositions, namely a and b, and
there are two output propositions, called x and y. Initially, all of these have a
value of false, as specified by the initialization assumption and the initialization
guarantee. For example, the initialization assumption & ! a ! b represents the
boolean formula ¬a ∧ ¬b. The only environment transition constraint states
that (a → ¬(x ∨ y)) must always hold. So the environment may only set a to
true during a transition if x and y are not both false in the last output signal
valuation. Other than that, the next values for a and b may be arbitrary. The
safety guarantees state that every output signal valuation chosen by the system
after the system has started must not be (x′, y′) = (true, true).

There is one liveness guarantee for the system and no liveness assumption.
The guarantee states that infinitely often, a and y need to be true in the same
step of the system’s execution. Since the system cannot control a, it needs to drive
the environment into setting a to true. The environment assumptions allow this:
since by them, a needs to be true in the next computation cycle after (x, y) have
been set to (false, true), the system can just choose (false, true) as output for
two cycles in a row to make progress towards satisfying the liveness guarantees.
As this behavior does not contradict the safety guarantees, slugs can compute
a controller.

There are no designated operators for implication (→) and equivalence (↔)
in the simple slugsin input language. However they can be simulated by the
two-operator sequences “| !” and “! ^”.

B.2 The structured slugs input format

The basic structure of a structured slugs specification file is the same as for a
non-structured one. There are two extensions:

– The possibility to use infix notation in the constraints.
– Support for non-negative integer variables of bounded domains, including

comparisons and additions of them.

The latter of these extensions allows to write expressions in a more human-
readable form. E.g., instead of writing | a’ ! | x y as in the example from
the previous subsection, the user can simply write a’ | !(x | y). Implications,
biimplication, and braces are supported, so (! a’ -> !(x | y)) is also a valid
formula. It is allowed to mix constraints in infix form and in Polish prefix form,
provided that they are all on their own lines. Operator precedence is as expected,
i.e., unary operations bind strongest, then and and then or.

The support for integer variables allows to specify scenarios in which the
progress of some quantity is described. In order to specify an integer variable,
in the [INPUT] or [OUTPUT] block, the variable is declared in the form variable-
Name:minimumValue...maximumValue.

For example, when synthesizing a vehicle controller that obtains the current
speed from some sensor, we can declare the input as follows:

[INPUT]

speed:0...127

This declaration adds 7 binary variables to the instance, which are enough to
encode all 128 possible speed values. The only allowed arithmetic operation on
integer variables is addition, and in order to obtain boolean constraints from
expressions, the values of integer variables have to be compared against other
values. For example, to constrain the system to not let the speed exceed 120
units, we could add the following constraint to the specification:

[SYS_TRANS]

speed’ <= 120

In order to make this specification realizable, we need to give the system control
over the speed. We do so by giving it an acceleration output :

[OUTPUT]

acc:0...5

The acceleration should always be an element of {−2,−1, 0, 1, 2}. Because the
structuredslugs format does not allow non-negative numbers, we have to store
the acceleration +2 instead. We can now describe the effect of acceleration by
an environment safety assumption:

[ENV_TRANS]

speed’+2 = speed+acc

Normally, one would want to write speed’ = speed+acc-2 as the constraint,
but as subtraction is not supported, the subtraction has to be shifted to the
other side of the equation.

In the integer operations in structuredslugs specification files, there is no
overflow semantics in the computations. Thus, by accelerating indefinitely, the
system can force the environment to violate this constraint. Thus, we have to
bound the speed from below and above:

[ENV_TRANS]

speed’+2 = speed+acc | speed’=127 & speed+acc>=129

| speed’=0 & speed+acc<=2

Note that the constraint needs to be written on a single line as line endings
terminate constraints in slugs and structuredslugs files. If we want to add a
noise of ±1 per computation cycle to the speed update, we can do so by using
the following requirements instead:

[ENV_TRANS]

speed’+2 <= speed+acc+1 | speed’=127 & speed+acc>=129

| speed’=0 & speed+acc<=2

speed’+2+1 >= speed+acc | speed’=127 & speed+acc>=129

| speed’=0 & speed+acc<=2

C Using Slugs

After a specification is written, slugs can be applied to it. From the slugs main
directory, this can be done with the command

src/slugs <Options> [InputFileName.slugs]

By default, slugs only checks if the specification is realizable, i.e., if there exists
an implementation. To obtain an implementation, a couple of output plugins are
available:

X --explicitStrategy: lets slugs extract an explicit-state strategy. The out-
put is compatible with the one produced by the GR(1) synthesis tool included
in the jtlv formal methods framework distribution.

X --jsonOutput: this option can be given in addition to the previous one. It
reformats the explicit-state output such that it can easily be read with a
json parser.

X --symbolicStrategy: lets slugs extract a BDD-based symbolic strategy.
There is one positional strategy per system goal in the output file.

X --simpleSymbolicStrategy: lets slugs extract a BDD-based symbolic strat-
egy in which the positional strategies for the system goals have been merged
into one strategy with a larger state space.

In case a structuredslugs file is the starting point, it first has to be translated
to a standard slugsin file before it can be used. This can be done with the
following command:

tools/StructuredSlugsParser/compiler.py [InputFile.

structuredslugs] > [OutputFile.slugsin]

In case there there is a syntax error in the structuredslugs file, a parser error
will be printed.

C.1 Debugging a specification

Getting specifications right is difficult. Oftentimes, it makes sense to write a
specification step-by-step and then check after each step if whether it is realizable
or not is as expected. Whenever this is not the case, this indicates an unexpected
implication of the specification or a bug in it. slugs comes with some scripts to
help with debugging a specification.

The interactive debugger allows to examine the behavior of a controller for
a realizable specification, and the behavior of an environment that falsifies an
unrealizable specification. The debugger is based on the curses library for text-
based user interfaces. The debugger can be started with the following command:

tools/cursesSimulator.py [inputFile.slugsin]

Figure 2 shows the interface of the debugger. It always shows the input and
output values in the last 5 computation cycles. They can be changed by inputting
values into some cells of the table. The up/down cursor keys allow the user to
change the currently selected input/output variable, whereas the left/right key
allow to change the computation cycles.

Variable values that have been enforced by the user are underlined. A color
coding shows which variable values are enforced by safety assumptions/guaran-
tees or by the winning strategy. Pressing the h button toggles the help screens.
The help screens explain the color codes and and meaning of the flags that
indicate which user-forced values are illegal. Along the input and output values,
the debugger also shows the number of the current environment and system
player goals. The text-based interface allows to run the debugger overnight on a
computation server in combination with the Linux screen utility. This is useful
for specifications whose realizability computation requires a lot of computation
time.

Fig. 2. The user interface of the interactive strategy debugger for a problem with the
input signals {in1, . . . , in4} and the output signals {level1, . . . , level5, choice}.

In addition to the specification debugger, there is also a Python script that
computes a specification report from a specification. This functionality can be
used as follows:

tools/createSpecificationReport.py [inputFile] > [outputFile.html]

The input file can either be in slugsin form or in structuredslugs form. Some
of the analysis steps take a long time, but the report can be already be viewed
with a web browser before all steps have been performed. The specification report
generation process is an implementation of the concepts from [5].

C.2 Other plugins

The slugs tool comes with a variety of other plugins that alter the functionality
of the tool. Most of them can be combined with any of the strategy extraction
options given above. A complete list of parameters and their meaning can be
optioned by running slugs --help. Some frequently used plugins are:

X --sysInitRoboticsSemantics: this lets slugs treat the initialization con-
straints in a way such that a specification is only called realizable if all
initial valuations that satisfy the initialization assumptions and guarantees
are winning for the system. This semantics is useful to tackle high-level robot
specifications in which the initial position of the robot in a workspace is not
under its control.

X --biasForAction: extracts controllers that rely on the liveness assumptions
being satisfied as little as possible.

X --counterStrategy: for unrealizable specifications, this plugin computes a
counter-strategy for the environment to force the violation of the specifica-
tion. This plugin is currently not available in combination with a symbolic
output strategy.

X --simpleRecovery: adds transitions to the system implementation that al-
low it to recover from sparse environment safety assumption faults in case
this can done greedily.

X --cooperativeGR1Strategy: computes a controller that is cooperative with
its environment, as explained in [3].

In addition, there is also a Python script that implements error-resilient synthe-
sis, as defined in [12]. It can be used by executing

tools/kResilientRealizabilityChecker.py [inputFile.slugsin]

The output will be the error resilience levels that are realizable for the particular
specification. Running the script with the parameter --writeOptimalCaseSpe-
cifications will furthermore let the script create specification files that imple-
ment the maximal possible error-resilience levels. The new specification files will
be named by the inputFile(resilienceLevel).slugsin scheme.

D Developing Plugins for Slugs

The main advantage of slugs over other stand-alone reactive synthesis tools
is that its plugin architecture makes it easy to alter the synthesis process. All
plugins can be found in the src directory of the slugs distribution and have a
name of the form extension....hpp. So essentially, they are C++ header files.

The reason for the plugins being in header files is that slugs uses the C++
template mechanism in order to encapsulate the plugins in a way that makes
them easy to read and pluggable in many ways at the same time. A basic plugin
starts with the following source code:

#ifndef __X_YOUR_EXTENSION_HPP__

#define __X_YOUR_EXTENSION_HPP__

template<class T> class XYourExtension : public T {

protected:

// Constructor

XYourExtension<T>(std::list<std::string> &filenames)

: T(filenames) {}

public:

static GR1Context* makeInstance(std::list<std::string>

&filenames) {

return new XYourExtension<T>(filenames);

}

};

#endif

In the code, the YourExtension string must be replaced by the actual name of
the plugin. A plugin inherits the functions from some basetype T , which must
inherit from the class GR1Context declared in gr1context.hpp. However, it may
also inherit from a version of the class that has already been decorated by an-
other plugin. The ways in which plugins are combinable is stated in main.cpp,
including the inheritance chains used in each case. In order to ensure that a mem-
ber field or function of the base class can be used, by the language semantics of
C++, it must be declared. For example, in order to import the element initEnv
from GR1Context (which contains the set of all positions in the synthesis game
that satisfy the initialization assumptions), one would add the line

using T::initEnv;

below the protected: line of the new extension template class. A plugin mainly
works by overriding functions from the GR1Context base class. It can also add
new functions that can then be used in other plugins that depend on this one.

There are four main functions in the GR1Context that can be overriden:

– void init(std::list<std::string> &filenames): This function is called
immediately after constructing the GR1Context. It allocates the BDD vari-
ables, reads the specification file and parses it into BDDs.

– void execute(): This function orchestrates the main functionality of the
tool. Plugins that alter slugs’ behavior in a way such that it does not
actually perform synthesis any more overwrite this function.

– void checkRealizability(): If the execute function is not overwritten,
this function is called to determine if the specification is realizable. It (nor-
mally) first computes the set of winning positions in the synthesis game and
then analyses it together with the initialization constraints to determine
realizability.

– void computeWinningPositions(): This function computes the set of win-
ning positions in the synthesis game built from the specification. The result
is stored in the GR1Context field winningPositions. At the same time,
the transitions leading closer to system goals, which are used for strategy
extraction, are stored in the GR1Context field strategyDumpingData.

The slugs tool uses a couple of other custom classes in addition. The BF

class represents a binary decision diagram (BDD). The term BF stands for
boolean function. Most of the plugins do not perform operations that are spe-
cific to BDDs, so other data structures for representing boolean functions could
also be used. In addition to the BF class, there are also the BFVarVector and
BFVarCube classes, which represent variable lists and variable sets, respectively.
The BFManager represents the general manager class for boolean functions. Cur-
rently, the class holds a reference to a CUDD manager object.

If during the development of a plugin, a BDD is to be printed at runtime,
this can be performed by the BF newDumpDot function. It gets four parameters:

– A reference to the variable info container,

– The BF/BDD to be printed,

– A variable group order, and

– A file name (with a .dot) ending.

The variable info container is used by the BF newDumpDot function to obtain the
names of the variables in the BDD. The variable group order can either be NULL

or be a space-separated string of variable groups. The GR1Context container
implements a BDD/BF variable manager, which in turn implements a variable
info container, so when using BF newDumpDot from a function in a plugin, the
first parameter is typically *this.

The variable manager maintains a list of BF/BDD variables and the types
of the variables. The types are all defined in variableTypes.hpp. The header
file furthermore defines run-time strings for all variable types and a hierarchy
between them. The hierarchy allows to split a variable type into several sub-
types in some plugins while considering only more coarse-grained variable type
sets in other plugins. An important feature of the slugs variable manager is
that it comes with the two classes SlugsVarVector and SlugsVarCube. They
inherit from BFVarVector and BFVarCube respectively, but add the possibility
to compute them automatically from the data in the variable manager when
instantiating them as fields in a descendent of GR1Context. As an example, the
declaration of the GR1Context class contains the following field definition:

SlugsVarVector varVectorPre{PreInput, PreOutput, this};

It declares the variable varVectorPre, which consists of all variables of the type
PreInput and PreOutput, and for the SlugsVariableManager implemented by
the object (hence the this). A list of all variable types can be found in the header
file variableTypes.hpp. Whenever a new variable is added, all SlugsVarVector
and SlugsVarCube objects need to be updated. This is done by calling the
computeVariableInformation function of the SlugsVariableManager. This is
done after a specification has been read. When new BF/BDD variables are allo-
cated in plugins, the function must be called manually afterwards.

After a new plugin has been implemented, it needs to be connected to the
main program. This is done in three steps:

– An #include directive for the new extension needs to be added to main.cpp

– A command line parameter and its explanation needs to be added to the
commandLineArguments list.

– All desireed parameter combinations with the new plugin need to be added
to optionCombinations list in main.cpp. The command line arguments
leading to the plugin combination must be given in lexicographically ordered
form.

Afterwards, the plugin can be used in the specified parameter combinations.
The feasible combinations of the plugins that are already included in the slugs

distribution are managed by the plugin combination enumerator.py script. It
contains a list of plugins, requirements on their combinations, and fills the said
lists in the main.cpp file with the allowed combinations.

