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Abstract— In order to control a system with complex
physical dynamics against a temporal specification, we can
compute a discrete abstraction of the system dynamics and then
solve a game built from the abstraction and the specification.
A strategy in this game is then a controller that enforces
the satisfaction of the specification. Such games are typically
huge, which implies the need to solve them symbolically, i.e.,
without considering every position in the game separately.
Binary decision diagrams (BDDs) are the most commonly used
data structure for this purpose, but the BDD of a system’s
transition relation is typically huge, which limits the scalability
of the approach.

In this paper, we present a new approach to implement
the enforceable predecessor operator for games represented in
BDD form. Solving a game is typically performed by repetitive
application of this operator. Our new approach targets system
dynamics for which some dimensions are translation invariant,
as common in robotics and vehicle control. We avoid the
construction of the overall transition relation in the game
and instead base the computation on local substitutions of
coordinate values in the translation invariant dimensions, which
keeps the intermediate result BDDs small.

We perform a comprehensive experimental comparison of the
classical enforceable predecessor implementation and our new
operator implementation. The results show that our approach
reduces game solving times and hence increases the scalability
of controller synthesis when employing a physical system
abstraction.

I. INTRODUCTION

Controlling continuous, hybrid, and cyber-physical sys-
tems to satisfy complex temporal specifications requires
to take all possible environment behaviors into account.
Due to the complexity of this problem, automatic controller
synthesis has emerged as a field of research to support the
engineering process of controllers for such systems [1], [2],
[3]. Controller synthesis for non-deterministic environments
is typically reduced to solving a game between two play-
ers that captures the interaction between the system to be
controlled and the environment, including the dynamics of
the system and the specification [4]. A winning strategy for
the system player in the game can then be compiled to a
controller that enforces the satisfaction of the specification.
Due to the undecidability of solving games of most of
the types that we obtain when using a precise description
of the continuous/hybrid system dynamics [5], game-based
controller synthesis is commonly performed using a discrete
abstraction of the system dynamics [6]. The resulting games
then have a finite number of states and can be solved with
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standard game solving algorithms. The abstraction alternat-
ingly simulates the original system [7], [8], which ensures
that whenever we obtain a controller that works correctly on
the discrete abstraction, we can translate it to one that also
works correctly for the continuous system dynamics from
which we took an abstraction.

Using a discrete abstraction of the continuous system
dynamics comes at a price, however. For all but the most
simple systems, abstractions that are fine enough to permit
a winning strategy for the system player in the games built
from them have huge state spaces. This makes an explicit
representation of their state spaces infeasible. Equally badly,
solving games with such huge state spaces is computationally
expensive. An alternative are symbolic representations of
abstractions and the games built from them [4], [9]. In a
symbolic representation, state sets are manipulated in an
implicit representation. Binary decision diagrams (BDDs)
[10] are the most commonly used representation in this
context. Unfortunately, the strong dependencies between the
dimensions that are observable in many abstractions reduce
the efficiency of game solving based on their symbolic repre-
sentation. However, symbolic data structures such as BDDs
have been shown to be instrumental to support complex
temporal specification in a controller synthesis process. As
the controller synthesis games are products of the specifi-
cation automata and the abstraction [8], both parts have to
be efficiently representable. Hence, rather than abandoning
symbolic state space representations for continuous/hybrid
system controller synthesis, improving the efficiency of using
them appears to be a more reasonable approach.

In this paper, we present a new way to implement the
enforceable predecessor operator [11] for game solving using
binary decision diagrams (BDDs). In contrast to the tradi-
tional way of implementing the operator, the new operator
implementation does not require building a monolithic BDD
for the overall transition relation in the abstraction. Rather,
it makes use of the fact that many system dynamics have
translation invariant dimensions. For example, the relative
position changes of a vehicle are independent of its location,
which can be exploited in the game solving process. The
new operator implementation is based on substituting state
values in such translation invariant dimensions in target
state sets by the respective values before a step in the
abstraction, which is more efficient than the existential and
universal abstraction operations performed in the traditional
operator implementation. This keeps the BDDs computed
during game solving small, which is the core reason for a
higher solving efficiency with our approach.

The new operator implementation supports dynamics in



which only some dimensions are translation invariant. We
give a comprehensive experimental evaluation in which we
compare it with the classical operator implementation. To
make such a comparison meaningful, we performed it in a
setting that has as few external influence factors as possible.
We used only simple specifications (so that the state spaces
of the games considered can be exactly the same as the state
spaces of the abstractions). In previous works, the chosen
variable order or the used dynamic reordering heuristic has
been shown to have a huge influence on the computation
times [12], and this influence is hard to predict. To reduce
the noise by this effect, we compare the operators on a large
number of benchmarks and consider both static and dynamic
variable orderings in the evaluation.

II. PRELIMINARIES

a) System Abstractions: Continuous system control can
be reduced to controlling a discrete-time abstraction when the
concrete systen and its abstraction are in a suitable formal re-
lation. Tabuada [7] described alternating simulation relations
as a suitable concept, which was later refined to feedback
refinement relations by Reissig, Weber, and Rungger [6].
In both cases, a correct controller for the abstraction can
be compiled to a correct controller for the concrete system.
The details of this process are left unaltered by the approach
presented in this paper, and we refer the interested reader to
[7], [6] for further information.

A discrete-time discrete-state system abstraction is defined
as a tuple A = (S,A, T,Σ, L), where S is a finite set of
states, A is a finite set of actions, T ⊆ S×A×S is a transition
relation, Σ is a state label alphabet, and L : S → Σ is a state
labeling function. A decision sequence of A is defined as a
word ρ = ρ0ρ1ρ2 . . . ∈ Aω , where Aω represents the set of
infinite words over characters from A. We say that an infinite
word π = π0π1 . . . ∈ Sω is a trace induced by ρ if for every
i ∈ N, we have that (πi, ρi, πi+1) ∈ T . We say that an output
sequence w = w0w1 . . . ∈ Σω is induced by π if for every
i ∈ N, we have wi = L(πi).

b) Specifications: A specification over some alphabet Σ
is a set L ⊆ Σω that states the allowed output sequences in an
abstraction that a controller to be computed should enforce.
Enforcing a specification means to select an action sequence
such that every output sequence induced by some possible
trace in the abstraction for the action sequence satisfies the
specification. For every i ∈ N, the ith element of the action
sequence can depend on the first i trace elements.

c) Games: Checking if a specification can be enforced
is commonly reduced to solving two-player games. A game
is a tuple G = (V,Σ0,Σ1, E0, E1, δ,L) with the set of
vertices (or positions) V , the action set Σ0/Σ1 of player 0 and
1, respectively, the allowed action functions E0 : V → 2Σ0

and E1 : V × Σ0 → 2Σ1

, the (partial) transition function
δ : V × Σ0 × Σ1 → V , and the winning condition L ⊆
(Σ0 × Σ1 × V )ω of player 0. For all v ∈ V , we require
δ(v, x0, x1) to be defined if and only if x0 ∈ E0(v) and
x1 ∈ E1(v, x0).

Two decision sequences ρ0 = ρ0
0ρ

0
1 . . . ∈ (Σ0)ω and ρ1 =

ρ1
0ρ

1
1 . . . ∈ (Σ1)ω for the two players induce a play in G,

which can either be finite or infinite. A play π = π0 . . . πn
is finite if we have πi+1 = E(πi, ρ

0
i , ρ

1
i ) for all 0 ≤ i < n,

and either ρ0
n /∈ E0(πi) or ρ1

n /∈ E1(πi, ρ
0
n). A play π =

π0 . . . πn is infinite if we have πi+1 = δ(πi, ρ
0
i , ρ

1
i ) for all

i ∈ N. A finite play is winning for player 0 if we have ρ1
n /∈

E1(πi, ρ
0
n), otherwise it is winning for player 1. An infinite

play is winning for player 0 if (ρ0
0, ρ

1
0, π0)(ρ0

1, ρ
1
1, π1) . . . ∈

L. A strategy for player 0 is a function f : V ∗ → Σ0. The
strategy is winning from a vertex v ∈ V if for all decision
sequences ρ0 and ρ1 and all plays π induced by ρ0 and ρ1,
if we have ρ0

i = f(π0 . . . πi−1) for all i ∈ N and π0 = v,
then the play is winning for player 0.

Given an abstraction A = (S,A, T,Σ, L) and a specifi-
cation L, a game G = (V,Σ0,Σ1, E0, E1, δ,L′) to check if
L can be enforced in A can be defined with the following
components:

• V = S
• Σ0 = A
• Σ1 = V
• For all v ∈ V , E0(v) = {a ∈ A | ∃v′ ∈ V.(v, a, v′) ∈
T}

• For all v ∈ V , a ∈ A, E1(v, a) = {v′ ∈ Σ1 |
(v, a, v′) ∈ T}

• For all v ∈ V , a ∈ E0(v), v′ ∈ E1(v, a), δ(v, a, v′) =
v′

• L′ = {(x0
0, x

1
0, v0)(x0

1, x
1
1, v1) . . . ∈ (Σ0 × Σ1 × V )ω |

L(v0)L(v1) . . . ∈ L}
In such a game, player 0 is the system player whereas
player 1 is the environment player. In every position v of
the game, the system player chooses an action a ∈ A to be
executed next, and the environment player then chooses a
next position v′ such that (v, a, v′) is a possible transition
in the abstraction from which the game was built. The game
implements the idea that the system can choose an action,
but it does not know in advance which transition in the
abstraction is taken. A winning strategy can take the history
of a play into account, which models the fact that a controller
can take the evolution of the system’s state into account as
well.

In this paper, we only build games from abstractions as
defined above. However, in more complex applications, the
action sets of the two players can also be richer and model
additional input and output of the system, such as user
interaction and sensor input. More details on how this works
can be found in [8, Section 5.1] Restricting our attention
to games build from an abstraction allows us to reduce the
amount of notation, in particular as the δ function in a game
becomes trivial.

d) Game Solving: Solving a game means to partition
the set of positions in a game into those from which player
0 has a winning strategy and those from which she does
not have a winning strategy. How to solve a game depends
on the type of winning condition L. The most simple game
type is a safety game, where for some set Vbad ⊆ V of bad



positions, L consists of all words (ρ0
0, ρ

1
0, π0)(ρ0

1, ρ
1
1, π1) . . .

for which for no i ∈ N, we have πi ∈ Vbad .
In a safety game, the system player tries to avoid reaching

a bad vertex during a play. We can find out from which
positions the system player can avoid to reach a bad vertex in
one step by computing the enforcable predecessor for V ′ =
V \ Vbad :

EnfPre(V ′) = {v ∈ V | ∃x ∈ E0(v).

∀y ∈ E1(x, y).δ(v, x, y) ∈ V ′}

The operator computes the set of positions from which player
0 has a valid action x for which, no matter what action player
1 chooses, the next transition will lead to a position in V ′.
So for V ′ = V \Vbad , we get the set of positions from which
player 0 can ensure not to reach a bad position in one step.
By continuing this line of reasoning, the following sequence
of position sets defines the set of positions from which the
system player can avoid to reach a bad position in 1 step in
a play, in 1 to 2 steps in a play, in 1 to 3 steps in a play,
and so on:

W1 = EnfPre(V \ Vbad) (1)
W2 = EnfPre(W1) ∩W1 (2)
W3 = EnfPre(W2) ∩W2 (3)
. . . . . . (4)

By the fact that by definition Wi+1 ⊆Wi for every i ∈ N and
the fact that V is finite, this sequence converges to a position
set Wfinal after a finite number of steps. It can be shown that
this is the set of positions from which the system player has
a strategy to ensure that Vbad is never reached, and hence the
set of positions from which it has a winning strategy. This
winning strategy always picks actions that ensure that a play
stays in Wfinal .

For more complicated winning conditions such as a
conjunction of a safety winning condition and a liveness
winning condition, for which some positions must be reached
infinitely often in a play, the set of winning positions
can be computed in a similar process, i.e., by repetitive
applications of the EnfPre operator to positions sets (and
merging the results with simple set union, complementation,
and intersection operations) [13]. This is also the approach
used in the experimental evaluation in Section IV.

e) Binary Decision Diagrams: Symbolic data structures
such as binary decision diagrams (BDDs) are often em-
ployed for solving games with a large number of positions.
From a semantic point of view, they represent Boolean
formulas f : 2B → B for some set of variables B.
For notational simplicity, we use subsets of B and their
characteristic functions interchangeably, i.e., a set B ⊆ B
also represents a function that maps all variables in B to
true and the others to false.

The usual operations on Boolean functions are defined
on Binary decision diagrams as well. Representatives for
them are disjunction, conjunction, existential and universal
abstraction, and complementation. For instance, given two

BDDs f and f ′, the function f ∨f ′ maps all valuations to B
to true that either f or f ′ map to true. As an example for
a more complex operation, the existential abstraction ∃B.f
for a subset of variables B ⊆ B is a Boolean function with
(∃B.f)(B′) = true for some B′ ⊆ B if and only if there
exists some B′′ ⊆ V with f((B′ \B) ∪B′′) = true.

f) BDDs for Games: A BDD can represent a set of
positions in a game and its E0 and E1 functions. For
this, the set of variables B needs to contain at least some
variables {bV0 , . . . , bVn−1, b

A
0 , . . . , b

A
m−1, b

A′

0 , . . . , bA
′

m−1} such
that bV0 , . . . , b

V
n−1 are plenty enough to encode all positions

in V , i.e., we have n ≥ dlog2(|V |)e, and bA
′

0 , . . . , bA
′

n−1

are plenty enough to encode all actions in A, i.e., we
have m ≥ dlog2(|A|)e. We assume that some (arbitrary)
encoding functions J·KV : V → 2{b

V
0 ,...,bVn−1} and J·KA :

V → 2{b
A
0 ,...,bAm−1}, and an encoding function J·KV ′ : V →

2{b
V ′
0 ,...,bV

′
n−1} are given. The latter function uses the same

bitwise encoding as J·KV (i.e., for which we have JvKV ′ =
JvKV ′ [bV

′

0 , bV
′

1 , . . . , bV
′

n−1/b
V
0 b

V
1 . . . b

V
n−1], where K[a/b] rep-

resents replacing every occurrence of some element a in
some set K by some term b. Whenever there are multiple
elements given in this operation, they are replaced simul-
taneously and while respecting the orders of the variables
in the element lists. With these functions, we can encode
a set of positions V ′ ⊆ V by fV ′ =

∨
v∈V ′JvK, the

allowed action function E0 as fE0 =
∨

v∈V,a∈E0(v)(JvKV ∧
JaKA) and the allowed action function E1 as fE1 =∨

v∈V,a∈E0(v),v′∈E1(v,a)(JvKV ∧ JaKA ∧ Jv′KV ′).
With E0 and E1 encoded into BDDs, we can solve

games with them. If f is a BDD that represents some set
of positions, we can compute the enforceable predecessor
operator as follows:

EnfPre(f) = ∃bA0 , . . . , bAm−1.(∀bV
′

0 , . . . , bV
′

n−1.

(f [bV
′

0 , . . . , bV
′

n−1/b
V
0 , . . . , b

V
n−1] ∨ ¬fE1) ∧ fE0)

With this operator defined over BDDs, the steps for comput-
ing the winning positions given in Equation 1 to 4 can be
rewritten as follows:

fW1
= EnfPre(¬Vbad)

fW2
= EnfPre(fW1

) ∧ fW1

fW3
= EnfPre(fW2

) ∧ fW2

. . . . . .

Since BDDs represent characteristic functions of sets, we
replaced the ∩ operator by a ∧.

g) BDD Internals: BDDs are internally represented as
directed acyclic graphs in which paths from a designated root
node to a true sink node represent variable assignments that
are mapped to true by the BDD. Such details are generally
not important for the scope of this paper, but two of their
effects will be of relevance:

(1) There is a global order among the variables in a BDD.
The number of nodes in a BDD depends on this variable
order for many applications, so choosing a good variable
order for an application is important, yet difficult. As a



consequence, modern BDD packages often support dynamic
variable reordering, in which some heuristics are employed
that automatically reorder the variables from time to time.
Since all operations performed on BDDs assume that all
BDDs have the same variable order, BDD libraries enforce
a global order for all BDDs. Due to the importance of a
good order, dynamic reordering is often crucial for good
performance, but at the same time the effect of the heuristics
are hard to predict, especially since the computed order
depends on the BDDs that a program maintains at the point
of time at which reordering is triggered.

(2) Binary decision diagram libraries also employ caching
of intermediate results. The sizes for caches are however
limited, and for different variable orders, cache hit rates can
vary substantially. Thus, the computation time of a BDD-
based algorithm can vary a lot with minor differences in the
input, which asks for using a large number of benchmarks
when comparing BDD-based algorithms.

III. EXPLOITING TRANSLATION INVARIANT
DIMENSIONS IN ABSTRACTIONS

The problem addressed in this paper is the improvement
of the efficiency of BDD-based game solving for games that
are (at least in part) built from the abstraction of a physical
system. The continuous state spaces from which the abstrac-
tions are built are subsets of a convex set Workspace ⊂ Rd

for some number of dimensions d ∈ N and we assume that
we have a way to compute a system abstraction that faithfully
models the physical system, i.e., such that a controller for
the abstraction can be translated to a correct controller for
the physical system. This assumption is reasonable, as there
are tools such as Pessoa [9] and SCOTS [4] available for
computing such abstractions.

We want to improve game solving performance by exploit-
ing two properties of such abstractions:

1) For d-dimensional physical systems, the state space
of the abstraction is S = {lb1, . . . , ub1} ×
{lb2, . . . , ub2} × . . . × {lbd, . . . , ubd} for the lower
bound sequence lb1, . . . , lbd and upper bound sequence
ub1, . . . , ubd.

2) Whenever the behavior of the system along the kth di-
mension is translation invariant (for some k ∈ N), i.e.,
the relative change of the system state does not depend
on the concrete state value in the kth dimension, then
this is the case for the system abstraction as well.

Translation invariance is often found for the x and y coordi-
nate dimensions in vehicle abstractions, as the dynamics of
a vehicle does not depend on where exactly in a workspace
it is located. The following formal definition of translation
invariance captures the idea at the abstraction level, as we
will only deal with the concept on this level in the following.

Definition 1: Let A = (S,A, T,Σ, L) be an abstrac-
tion with S = {lb1, . . . , ub1} × {lb2, . . . , ub2} × . . . ×
{lbd, . . . , ubd} for some d ∈ N. We say that dimen-
sion k ∈ {1, . . . , d} is translation invariant if for every
(x1, . . . , xd) ∈ S, a ∈ Σ, and (x′1, . . . , x

′
d) ∈ S with

Fig. 1. Explanation figure for translation invariance.

((x1, . . . , xd), a, (x′1, . . . , x
′
d)) ∈ T and for every c ∈ Z,

either
1) (x1, . . . , xk−1, xk+c, xk+1, . . . , xd), a, (x′1, . . . , xk−1,

x′k + c, x′k+1, . . . , x
′
d)) ∈ T (i.e, the same transition

shifted by c ∈ Z in the kth dimension is contained in
T as well),

2) (x1, . . . , xk−1, xk + c, xk+1, . . . , xd) 6∈ S (the source
state shifted by c ∈ Z in the kth dimension is not part
of the abstraction), or

3) for no s′ ∈ S, we have ((x1, . . . , xk−1, xk +
c, xk+1, . . . , xd), a, s′) ∈ T (action a is not available
from the source state shifted by c ∈ Z in the kth
dimension).

Figure 1 depicts the concept. We assume three-dimensional
system dynamics, where only two dimensions are depicted
and the predecessor state value for the third dimension and
the chosen action is the same for all transitions depicted in
the figure. If the dimensions represented by the vertical axis
and the horizonal axis in the figure are translation invariant,
then this implies that the same transitions shifted up, down,
left and right are also present in the abstraction whenever
a state/action pair has any successor states in the transition
relation. The latter is for example not the case whenever one
transition for a state/action pair has a successor state that
would be out of the boundaries of the workspace, and hence
the action cannot be executed by a controller in the state
without risking to leave the designated workspace.

A. Game Representation Compression using Translation In-
variance

Translation invariant dimensions k ∈ {1, . . . , d} en-
able us to compress the representation of T : rather
than storing the complete set T , we can store one
representative for every transition (x1, . . . , xk−1, xk +
c, xk+1, . . . , xd), a, (x′1, . . . , xk−1, x

′
k + c, x′k+1, . . . , x

′
d)) ∈

T for some c ∈ Z. As a consequence, we can reduce
the size of the representation of T by a factor of up to
ubk−lbk+1. If multiple dimensions are translation invariant,
we can save even more space. When building games G =
(V,Σ0,Σ1, E0, E1, δ,L′) from abstractions, the compressed
representation of T gives rise to a compressed representation
for E1, as this is where T gets encoded into.

Such a compressed representation of E1 in a game
enables us to encode E1 by a BDD over a smaller set
of variables: rather than allocating Boolean variables to
encode both the xk and x′k components of a transition



Fig. 2. Possible relative position updates of the single-speed vehicle
dynamics used in Section IV.

((x1, . . . , xd), a, (x′1, . . . , x
′
d)) ∈ T , we only need to encode

the relative update, i.e., x′k − xk.1 Hence, we can save
dlog2(ubk − lbk + 1)e Boolean variables, which reduces the
workload of the BDD operations.

B. An EnfPre Operator for Compressed Games

A compressed representation of components of a game
is only useful if we have a way to apply the enforceable
predecessor operator to game position sets. As we do not
compress the game position sets themselves, but only the
representation of E1, which is only used in this operator
during game solving, defining a modified enforcable prede-
cessor operator implementation is sufficient for working with
compressed game representations.

The BDD-based EnfPre operator that we present in this
paper is based on the observation that in abstractions used
for controlling physical systems, the state value changes
in the translation invariant dimensions are typically rather
small. For instance, Figure 2 shows the possible position
updates for a single-speed vehicle dynamics that we use in
the experimental evaluation in the next section. The dynamics
have three dimensions – apart from the translation invariant
x and y coordinate dimensions, the vehicle also has a current
heading (which is not shown in the figure). The abstraction
was obtained using a fixed time-step. In every such time step,
the x or y positions of the vehicle can change by a value of
at most 5. For large workspaces, this means that only states
with few different (x, y) position changes are reachable by
making a single step in the game.

This fact can be exploited in a BDD-based implementa-
tion of the EnfPre operator, provided that fE1 is encoded
appropriately. Let Dinv ⊆ {1, . . . , d} be the set of translation
invariant dimensions, and B be a set consisting of the
following Boolean variables:

1This line of reasoning assumes that all state components are encoded
into separate sets of Boolean variables when translating E1 into BDD form.
The assumption is justified as both the Pessoa and SCOTS tools produce
BDDs with such encodings, and no systematic approaches to exploit the
possibility of not doing so appears to be known in the literature.

• bV,i0 , . . . , bV,ini
for every i ∈ {1, . . . , d} are the vari-

ables to encode the state in dimension i, where ni =
dlog2(ubi − lbi)e is the number of bits for the size of
the workspace in the ith dimension,

• bA0 , . . . , b
A
m are the variables for encoding the actions,

where m = dlog2(|A|)e, and
• bV

′,i
0 , . . . , bV

′,i
ni

for every i ∈ {1, . . . , d} \ Dinv are the
variables to encode successor states.

This variable set is the same as in the previous section, except
that we split up the variables for every dimension and we
do not have two copies of the variables for the translation
invariant state dimensions. We denote the encoding of a value
in dimension i in the state into the corresponding Boolean
values as J·KV,i and J·KV ′,i, respectively, and let BV , BA,
and BV ′ denote the sets of variables of the three types listed
above. We can now encode E1 as follows:

fE1 =
∨

((x1,...,xd),a,(x′1,...,x
′
d))∈T

(( ∧
k∈{1,...,d}\Dinv

JxkKV,k

∧ Jx′kKV ′,k ∧ JaKA
)
∧
∧

k∈Dinv

Jx′k − xkKV,k
)

Thus, for every non-translation invariant dimension, prede-
cessor and successor state values are stored in the traditional
way and as explained in Sect. II. For the translation invariant
dimension, we do not store the predecessor and successor
values in fE1 , but rather encode the relative differences. Note
that for some dimension k ∈ Dinv , the value of x′k−xk may
not be within {lbk, . . . , ubk} – for this reason, we store the
value using a two’s complement binary encoding and ignore
lbk and ubk for such dimensions.

Using such an encoding for fE1 , we can now give an
alternative EnfPre operator definition over BDDs. For this,
we first define the set of possible state component updates
in the translation invariant dimensions (which is depicted in
Figure 2 for an example dynamics):

Disloc = {©i∈{1,...,d}

({
x′i − xi if i ∈ Dinv

0 else

)
|

((x1, . . . , xd), a, (x′1, . . . , x
′
d)) ∈ T}

In this equation, the © operator represents building a tuple
over the expression right of it for all elements of the index
set. For notational simplicity in the following, the elements
of Disloc are d-tuples, where values for the dimensions that
are not rotation invariant are set to 0. Using this set, we can
then define a set of substitution sequences

Subst = {Concati∈Dinv Substi(xi) | (x1, . . . , xn) ∈ Disloc}

for

Substi(xi) = Concatj∈{0,...,ni}bV,ij ,
∨

k∈{max(lbi,lbi+k),...,

min(ubi,ubi+k)}

Jk − xiKV,ij

 ,



where Concat refers to the concatenation of sequences.
The idea behind these functions is the following: for

all possible changes in the translation invariant dimensions,
Subst contains a substitution sequence for the BDD variables
in the translation invariant dimensions. For a dislocation
vector (x1, . . . , xd), the corresponding substitution sequence
modifies the value of every state (x′1, . . . , x

′
d) to (x′1 +

x1, . . . , x
′
d + xd).

Function Substi gives a suitable substitution for a single
dimension and a single dislocation value for this dimension,
while Subst computes substitution sequences for all possible
dislocation combinations. The former of these functions
iterates over all bits in the binary encoding for dimension
d, where J·KV,ij refers to encoding the jth bit of the value
passed to the operator using the Boolean variable bV,ij .

Using the set Subst, we can now give the definition of the
new EnfPre operator:

EnfPre(f) = ∃BA.∀BV ′ .g(f) ∧ fE0 ,

where we have

g(f) =
∧

s1,s′1,...,sl,s
′
l∈Subst

(f [s1/s
′
1, s2/s

′
2, . . . , sl/s

′
l] ∨ ¬fE1) .

The final EnfPre operator definition is essentially the same
as the classical definition except that combining fE1 and
f has been delegated to the function g(f). With the new
definition, a position/action combination can only be a model
of g(f) if for all possible dislocations that the action can
lead to, the resulting state is a model of f or fE1 does not
contain the corresponding non-translation invariant position
component change.

IV. EXPERIMENTS

We consider three different system dynamics to evaluate
the game solving performance with the classical version of
the EnfPre operator and the new version from this paper:
• A slowly rotating single-speed vehicle dynamics with

three dimensions (where the X and Y position dimen-
sions are translation invariant, and the current rotation
is not). The only control input is the change in rotation.

• An inertia-free vehicle dynamics from [4], which has
the same state dimensions as the first dynamics. Control
inputs are the change in rotation and the current speed.

• A simple moon lander, which is again translation invari-
ant in the X and Y position dimensions, but not in the
other two dimensions that represent the current vertical
and horizontal speed values. There are two control
inputs to alter the vertical and horizontal speed values.

The details of the first and the third dynamics are given
in [14]. We apply these dynamics for control problems in
workspaces that, in the X and Y dimensions, have sizes from
16 × 16 to 64 × 64 cells in the abstraction, where we call
the set of states corresponding to one (x, y)-location in the
workspace a cell. Table I contains some further information
on the abstractions used for this experimental evaluation.

For each of the 480 benchmarks built from these abstrac-
tions, a couple of random static obstacles are added to a

TABLE I
INFORMATION ON THE SYSTEM DYNAMICS ABSTRACTIONS

CONSIDERED IN THIS PAPER.

System Dynamics Slowly
rotating
vehicle

Inertia-
free vehicle
dynamics
from [4]

Moon
lander

Number of states per cell 64 35 11× 16
Number of different con-
trol inputs

11 7× 7 7× 8

Number of transitions per
cell (encoded into fE1 )

16290 21613 246126

blank workspace, and target regions for a patrolling task
are generated randomly. Thus, the controller has to patrol
between the regions while avoiding to collide with obstacles
or the workspace boundaries. For the single-speed vehicle
dynamics, the random challenge problem generation process
lead to 178 challenge problems that permit controllers that
ensure that the specification holds, whereas for 32 challenge
problems, no such controllers exist. For the inertia-free ve-
hicle, 13 problems permit controllers, while 137 do not. For
the moon lander, the corresponding generation process lead
to 32 challenge problems that permit a controller, whereas
88 do not.

The implementation of the game solver, all
parameters of the physical systems and the
abstractions, and the benchmarks can be obtained from
https://progirep.github.io/bestirs. The
game solver uses the CuDD binary decision diagram library
[15] by Fabio Somenzi. We did not implement a detection
scheme for translation-invariant dimensions, but rather con-
sidered the list of such dimensions to be an input to the tool.

Figure 3 shows a cactus plot for the overall game solv-
ing performance on all benchmarks, which states for each
algorithm variant how many benchmarks were solved within
a given time bound. All experiments were performed on
a computer with an AMD Opteron(tm) 2220 SE processor
running an x64 version of Linux, where each run had 3 GB of
RAM available. Due to the importance of automatic variable
reordering in BDDs, we performed all experiments three
times: with the default variable order (where predecessor and
successor state variables interleave), with automatic variable
reordering turned on, and a third time in which the final
order from the runs with reordering enabled is used as static
variable order.

It can be seen that for all three choices for handling the
variable order, the computation times improved substantially
with our new operator implementation (note that the time
axis is logarithmic). For the most difficult problems, the
classical operator implementation is able to catch up. A
possible reason for this effect is that the CuDD library does
not cache intermediate results of substitution operations,
whereas all intermediate results can be cached for the clas-
sical EnfPre implementation. The more recent BDD library
Sylvan [16] can also cache substitution operations, but has
not been used for this study as it does currently not support
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Fig. 3. Cactus plot comparing the different enforceable precedessor operator implementations.

automatic variable reordering. Exploiting better caching of
the substitution operation is hence left as future work.

More details on the experiments are also available on
https://progirep.github.io/bestirs.

V. CONCLUSION

We have presented a new approach to implementing the
enforceable predecessor operator for solving symbolically
represented games. We targeted those games that model the
controller synthesis problem for a physical system using
an abstraction of its dynamics. Our approach exploits the
locality of state changes in translation invariant dimensions,
which are a common occurrence in control applications.

Our experiments show that the new implementation is
substantially faster on problems of moderate complexity,
and as good as the traditional operator implementation on
more complex control problems. The performance of the new
approach can be further improved by computing abstractions
that are more local, i.e., for which the relative changes
in the translation invariant dimensions are small, as this
reduces the size of the Disloc set in the operator definition.
When computing abstractions of time-continuous systems,
this can be achieved by carefully selecting a suitable time
step. Optimizing abstractions in this way is left for future
work, and since we showed that the new abstraction operator
is similarly efficient as the classical one, this approach is
promising to further increase game solving efficiency.
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